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1. Introduction

Fractional calculus has gained wide attention from both theoretical and applied perspectives

over the last few decades. A detailed description of the subject can be found in [1–5]. We

note that most of the available literature on the solvability of fractional differential equations

are focused on the finite interval. Few papers discuss fractional differential equations on the

infinite intervals [6–12]. Zhao and Ge [6] applied the Schauder’s fixed-point theorem to study

the existence of positive solutions for the following nonlocal fractional boundary value problem:{
Dα

0+u(t) + f(t, u(t)) = 0, 1 < α ≤ 2,

u(0) = 0, limt→+∞ Dα−1
0+ u(t) = βu(ξ),

(1.1)

where t ∈ J = [0,+∞), f ∈ C(J × R, J), 0 < ξ < +∞, Dα
0+ is the standard Riemann-Liouville

fractional derivative of order α. Su and Zhang [7] applied the same method as [6] to obtain the

existence result of solutions for a boundary value problem of fractional order:{
Dα

0+u(t) + f(t, u(t), Dα−1
0+ u(t)) = 0, 1 < α ≤ 2,

u(0) = 0, limt→+∞ Dα−1
0+ u(t) = u∞, u∞ ∈ R,

(1.2)

where t ∈ J = [0,+∞), f ∈ C(J × R× R,R).
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By using the Schauder’s fixed-point theorem and the Banach’s contraction mapping principle,

the authors in [8] found sufficient conditions for the existence and uniqueness of solutions for the

boundary value problem:{
Dα

0+u(t) + f(t, u(t)) = 0, 2 < α ≤ 3,

u(0) = u′(0) = 0, Dα−1
0+ u(∞) = ξIβ0+u(η), β > 0,

(1.3)

where t ∈ J = [0,+∞), f ∈ C(J × R,R), ξ ∈ R, η ∈ J , Dα
0+ is the Riemann-Liouville fractional

derivatives of order α, and Iβ0+ is the Riemann-Liouville fractional integral of order β.

Liang and Zhang [9] considered the following nonlinear fractional differential equations with

multipoint fractional boundary conditions on an unbounded domain:{
Dα

0+u(t) + a(t)f(t, u(t)) = 0, 2 < α ≤ 3,

u(0) = u′(0) = 0, Dα−1
0+ u(+∞) =

∑m−2
i=1 βiu(ξi),

(1.4)

where t ∈ J = [0,+∞), Dα
0+ , D

α−1
0+ are the Caputo fractional derivatives, and 0 < ξ1 < ξ2 <

. . . < ξm−2 < +∞ and βi > 0, i = 1, 2, . . . ,m−2, satisfy 0 <
∑m−2

i=1 βiξ
α−1
i < Γ(α). By using the

fixed-point index theory, the authors provided sufficient conditions for the existence of multiple

positive solutions to the above multi-point fractional boundary value problem.

Motivated by the aforementioned papers, an interesting and important question is if we know

the existence of the solution, how can we seek it? This question motivates the study of iterative

sequences of positive solutions for the following fractional boundary value problem (FBVP):{
Dα

0+u(t) + f(t, u(t), Dα−1
0+ u(t)) = 0, n− 1 < α ≤ n,

u(j)(0) = 0(j = 0, 1, 2, . . . , n− 2), Dα−1
0+ u(+∞) =

∫ +∞
0

h(t)u(t)dt,
(1.5)

where t ∈ J = [0,+∞), f ∈ C(J × R × R, J), h(t) ∈ L[0,+∞), Dα
0+ is the standard Riemann-

Liouville fractional derivative of order α. Here, we emphasize that the nonlinearity term depends

on the unknown function’s lower-order fractional derivative and the boundary value depends on

the unknown function’s integral.

By applying the monotone iterative method in this study, we first develop two computable

explicit monotone iterative sequences for approximating the minimal and maximal positive so-

lutions. We also obtain an explicit iterative sequence for approximating the unique positive

solution and provide an error estimate for approximation, which is more interesting and valu-

able for devising the auxiliary routine that establishes the existence of solutions for the problem

at hand and provides method for obtaining solutions. For the application and details of the

method, refer to [13–17] and the references therein. Furthermore, the nonlinearity term of our

research depends on the unknown function’s lower-order fractional derivative, which is different

from [6,8,9]. Finally, the main results extend the fractional derivative from the low-order to the

high-order fractional derivatives.

The remainder of this paper is organized as follows: Section 2 presents basic definitions and

related lemmas that will be used. In Section 3, the main results and proof are presented. In

Section 4, two examples are provided to illustrate the main results.
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2. Preliminaries and lemmas

First, we introduce the assumptions that will play an important role in our main results.

(H1) h(t) ∈ L[0,+∞) and
∫ +∞
0

h(t)tα−1dt := ∆ < Γ(α), f(t, 0, 0) ̸≡ 0, ∀t ∈ J.

(H2) There exist nonnegative integrable functions a(t), b(t), c(t) defined on [0,+∞) and

constants p, q ≥ 0, such that

|f(t, u, v)| ≤ a(t) + b(t)|u|p + c(t)|v|q,

and∫ +∞

0

a(t)dt = a∗ < +∞,

∫ +∞

0

b(t)(1 + tα−1)pdt = b∗ < +∞,

∫ +∞

0

c(t)dt = c∗ < +∞.

(H3) f is nondecreasing with respect to the second and last variables.

(H4) There exist nonnegative integrable functions d(t), e(t) defined on [0,+∞), such that

|f(t, u, v)− f(t, u′, v′)| ≤ d(t)|u− u′|+ e(t)|v − v′|, t ∈ J, u, u′, v, v′ ∈ R,

and∫ +∞

0

d(t)(1 + tα−1)dt = d∗ < +∞,

∫ +∞

0

e(t)dt = e∗ < +∞,

∫ +∞

0

|f(t, 0, 0)|dt = λ < +∞.

Secondly, we present definitions and lemmas that are useful to the proof of main results.

Definition 2.1 ([2, 3]) The Riemann-Liouville fractional derivative of order α for a continuous

function f is given by

Dα
0+f(x) =

1

Γ(n− α)
(
d

dx
)n

∫ x

0

(x− t)n−α−1f(t)dt, α > 0, n = [α] + 1,

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 ([2, 3]) The Riemann-Liouville fractional integral of order α for a function f is

given by

Iα0+f(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0,

provided that the integral exists.

Lemma 2.3 Let y ∈ C[0,+∞) with
∫ +∞
0

h(t)tα−1dt ̸= Γ(α). For n − 1 < α ≤ n, then the

fractional boundary value problem{
Dα

0+u(t) + y(t) = 0, 0 < t < +∞,

u(j)(0) = 0(j = 0, 1, 2, . . . , n− 2), Dα−1
0+ u(+∞) =

∫ +∞
0

h(t)u(t)dt,
(2.1)

has a unique solution

u(t) =

∫ ∞

0

G(t, s)y(s)ds, (2.2)

where

G(t, s) = G1(t, s) +G2(t, s), (2.3)
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with

G1(t, s) =
1

Γ(α)

{
tα−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ +∞,

tα−1, 0 ≤ t ≤ s ≤ +∞,

G2(t, s) =
tα−1

Γ(α)−∆

∫ +∞

0

h(t)G1(t, s)dt. (2.4)

Proof This proof is similar to [18, Lemma 2.3], so we omit it. �

Remark 2.4 From (2.2)–(2.4), we have

Dα−1
0+ u(t) =

∫ ∞

0

G∗(t, s)y(s)ds,

where

G∗(t, s) = G∗
1(t, s) +G∗

2(t, s), (2.5)

with

G∗
1(t, s) =

{
0, 0 ≤ s ≤ t ≤ +∞,

1, 0 ≤ t ≤ s ≤ +∞,

G∗
2(t, s) =

Γ(α)

Γ(α)−∆

∫ +∞

0

h(t)G1(t, s)dt.

Lemma 2.5 For (s, t) ∈ J × J , if condition (H1) satisfies, then

0 ≤ G(t, s) ≤ tα−1

Γ(α)−∆
, 0 ≤ G(t, s)

1 + tα−1
≤ 1

Γ(α)−∆
,

and

0 ≤ G∗(t, s) ≤ Γ(α)

Γ(α)−∆
.

Proof From (2.3), we can easily determine that

0 ≤ G1(t, s) ≤
tα−1

Γ(α)
, ∀(t, s) ∈ J × J,

and

0 ≤ G2(t, s) ≤
tα−1

Γ(α)−∆

∫ +∞

0

h(t)tα−1

Γ(α)
dt =

∆tα−1

Γ(α)(Γ(α)−∆)
, ∀(t, s) ∈ J × J,

then

0 ≤ G(t, s) = G1(t, s) +G2(t, s) ≤
tα−1

Γ(α)−∆
, ∀(t, s) ∈ J × J.

So

0 ≤ G(t, s)

1 + tα−1
≤ 1

Γ(α)−∆
, ∀(t, s) ∈ J × J.

By direct calculation from (2.5), we can easily obtain

0 ≤ G∗(t, s) = G∗
1(t, s) +G∗

2(t, s) ≤ 1 +
∆

Γ(α)−∆
=

Γ(α)

Γ(α)−∆
, ∀(t, s) ∈ J × J.

Therefore, the proof is completed. �
Define two Banach spaces

X = {u ∈ C(J,R) : sup
t∈J

|u(t)|
1 + tα

< +∞},
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Y = {u ∈ X : Dα−1
0+ u(t) ∈ C(J,R), sup

t∈J
|Dα−1

0+ u(t)| < +∞}

equipped with norms ∥u∥X = supt∈J
|u(t)|
1+tα and ∥u∥Y = max{∥u∥X , supt∈J |Dα−1

0+ u(t)|}.

Lemma 2.6 If condition (H2) is satisfied, then∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s))|ds ≤ a∗ + b∗∥u∥pY + c∗∥u∥qY , ∀u ∈ Y.

Proof For ∀u ∈ Y , by condition (H2), we have∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s))|ds ≤

∫ +∞

0

[a(s) + b(s)|u(s)|p + c(s)|Dα−1
0+ u(s)|q]ds

≤ a∗ +

∫ +∞

0

b(s)(1 + sα−1)p
|u(s)|p

(1 + sα−1)p
ds+

∫ +∞

0

c(s)|Dα−1
0+ u(s)|qds

≤ a∗ + b∗∥u∥pY + c∗∥u∥qY . �

Lemma 2.7 If condition (H4) is satisfied, then∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s))|ds ≤ (d∗ + e∗)∥u∥Y + λ, ∀u ∈ Y.

Proof For ∀u ∈ Y , by condition (H4), we have∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s))|ds =

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s))− f(s, 0, 0) + f(s, 0, 0)|ds

≤
∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s))− f(s, 0, 0)|ds+

∫ +∞

0

|f(s, 0, 0)|ds

≤
∫ +∞

0

d(s)(1 + tα−1)
|u(s)|

1 + tα−1
ds+

∫ +∞

0

e(s)|Dα−1
0+ u(s)|ds+

∫ +∞

0

|f(s, 0, 0)|ds

≤ (d∗ + e∗)∥u∥Y + λ. �

Lemma 2.8 ([8]) Let U ⊂ X be a bounded set. Then U is a relatively compact in X if the

following conditions hold:

(i) For any u(t) ∈ U, u(t)
1+tα−1 and Dα−1

0+ u(t) are equicontinuous on any compact interval of J ;

(ii) For any ε > 0, there is a constant T = T (ε) > 0 such that | u(t1)

1+tα−1
1

− u(t2)

1+tα−1
2

| < ε and

|Dα−1
0+ u(t1)−Dα−1

0+ u(t2)| < ε for any t1, t2 ≥ T and u ∈ U .

Define an operator T associated with FBVP (1.5) by

Tu(t) =

∫ ∞

0

G(t, s)f(t, u(t), Dα−1
0+ u(t))ds. (2.6)

Applying Lemma 2.3, it is easy to prove that FBVP (1.5) has a solution if and only if the

operator equation u = Tu has a fixed point, where T is given by (2.6).

Lemma 2.9 Assume that the conditions (H1) and (H2) are satisfied. Then the operator T :

Y → Y is completely continuous.

Proof We first show that the operator T : Y → Y is relatively compact.
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(i) Let Ω = {u|u ∈ Y, ∥u∥Y ≤ M}. For ∀u ∈ Ω, by Lemmas 2.5 and 2.6, we obtain

∥Tu∥X = sup
t∈J

∣∣∣ ∫ +∞

0

G(t, s)

1 + tα−1
f(s, u(s), Dα−1

0+ u(s))ds
∣∣∣

≤ 1

Γ(α)−∆

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s))|ds

≤ 1

Γ(α)−∆
[a∗ + b∗Mp + c∗Mq] (2.7)

and

sup
t∈J

|Dα−1
0+ Tu(t)| = sup

t∈J

∣∣∣ ∫ ∞

0

G∗(t, s)f(s, u(s), Dα−1
0+ u(s))ds

∣∣∣
≤ Γ(α)

Γ(α)−∆

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s))|ds

≤ Γ(α)

Γ(α)−∆
[a∗ + b∗Mp + c∗Mq]. (2.8)

So

∥Tu∥Y = max{∥Tu∥X , sup
t∈J

|Dα−1Tu(t)|} ≤ max{1,Γ(α)}
Γ(α)−∆

[a∗ + b∗Mp + c∗Mq],

which implies that TΩ is uniformly bounded.

(ii) Let I ⊂ J be any interval. Then, for all t1, t2 ∈ I, t2 > t1 and u ∈ Ω, we obtain

| Tu(t2)

1 + tα−1
2

− Tu(t1)

1 + tα−1
1

| ≤
∣∣∣ ∫ +∞

0

(
G(t2, s)

1 + tα−1
2

− G(t1, s)

1 + tα−1
1

)f(s, u(s), Dα−1
0+ u(s))ds

∣∣∣
≤

∫ +∞

0

| G(t2, s)

1 + tα−1
2

− G(t1, s)

1 + tα−1
1

||f(s, u(s), Dα−1
0+ u(s))|ds. (2.9)

Since G(t, s) ∈ C(J × J), for any compact set I × I,G(t, s)/(1 + tα−1) is uniformly continuous.

Furthermore, the function G(t, s)/(1 + tα−1) only depends on t for s ≥ t, which implies that

G(t, s)/(1+ tα−1) is uniformly continuous on I × (J \ I). That is, for all s ∈ J and t1, t2 ∈ I, we

have

∀ϵ > 0, ∃δ(ϵ) such that if |t1 − t2| < δ, then | G(t2, s)

1 + tα−1
2

− G(t1, s)

1 + tα−1
1

| < ϵ. (2.10)

By Lemma 2.6, for all u ∈ Ω, we find that∫ +∞

0

|f(t, u(t), Dα−1
0+ u(t))|ds ≤ a∗ + b∗Mp + c∗Mq < ∞,

together with (2.9) and (2.10), which implies that Tu(t)/(1 + tα−1) is equicontinuous on I.

Note that

Dα−1
0+ Tu(t) =

∫ ∞

0

G∗(t, s)f(s, u(s), Dα−1
0+ u(s))ds

and the function G∗(t, s) ∈ C(J × J) does not depend on t, which implies that Dα−1
0+ Tu(t) is

equicontinuous on I. Hence, we prove that the operator T : Y → Y is equicontinuous on any

compact interval I of J .

(iii) We show the operator T is equiconvergent at ∞. Since

lim
t→∞

G(t, s)

1 + tα−1
=

1

Γ(α)−∆

∫ +∞

0

h(t)G1(t, s)dt,
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by knowledge of limit theory, it is easy to infer that for any ϵ > 0, there exists a constant

C = C(ϵ) > 0, for any t1, t2 ≥ C and s ∈ J , such that

| G(t2, s)

1 + tα−1
2

− G(t1, s)

1 + tα−1
1

| < ϵ.

Therefore, by Lemma 2.6 and (2.9), we conclude that Tu(t)/1 + tα−1 is equiconvergent at ∞.

As the function G∗(t, s) does not depend on t, we can easily determine that Dα−1
0+ Tu(t) is

equiconvergent at ∞.

From the above three steps, by Lemma 2.8, it follows that the operator T : Y → Y is

relatively compact.

Next, we show that the operator T : Y → Y is continuous. Let un, u ∈ Y, such that

un → u(n → ∞). Then ∥un∥Y < ∞, ∥u∥Y < ∞. By Lemmas 2.5 and 2.6, we obtain

∥Tun∥X =sup
t∈J

∣∣∣ ∫ +∞

0

G(t, s)

1 + tα−1
f(s, un(s), D

α−1
0+ un(s))ds

∣∣∣
≤ 1

Γ(α)−∆

∫ +∞

0

|f(s, un(s), D
α−1
0+ un(s))|ds

≤ 1

Γ(α)−∆
[a∗ + b∗∥un∥pY + c∗∥un∥qY ],

sup
t∈J

|Dα−1
0+ un(t)| =sup

t∈J

∣∣∣ ∫ ∞

0

G∗(t, s)f(s, un(s), D
α−1
0+ un(s))ds

∣∣∣
≤ Γ(α)

Γ(α)−∆

∫ +∞

0

|f(s, un(s), D
α−1
0+ un(s))|ds

≤ Γ(α)

Γ(α)−∆
[a∗ + b∗∥un∥pY + c∗∥un∥qY ],

and by the Lebesgue dominated convergence theorem and continuity of f , we obtain

lim
n→∞

∫ +∞

0

G(t, s)

1 + tα−1
f(s, un(s), D

α−1
0+ un(s))ds =

∫ +∞

0

G(t, s)

1 + tα−1
f(s, u(s), Dα−1

0+ u(s))ds,

lim
n→∞

∫ ∞

0

G∗(t, s)f(s, un(s), D
α−1
0+ un(s))ds =

∫ ∞

0

G∗(t, s)f(s, u(s), Dα−1
0+ u(s))ds.

Then, as n → ∞,

∥Tun − Tu∥X ≤ sup
t∈J

∫ +∞

0

G(t, s)

1 + tα−1
|f(s, un(s), D

α−1
0+ un(s))− f(s, u(s), Dα−1

0+ u(s))|ds → 0,

and, as n → ∞,

sup
t∈J

|Dα−1
0+ un(t)−Dα−1

0+ u(t)| ≤ sup
t∈J

∫ ∞

0

G∗(t, s)|f(s, un(s), D
α−1
0+ un(s))−f(s, u(s), Dα−1

0+ u(s))|ds → 0.

This implies that the operator T is continuous.

In view of the above arguments, we infer that the operator T : Y → Y is completely contin-

uous. Therefore, the proof is completed. �

3. Main results
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In this section, we provide the main results for discussing iterative sequences of positive

solutions of FBVP (1.5).

For convenience, we set L = 1
Γ(α)−∆ max{1,Γ(α)}. Define a cone P ⊂ Y by P = {u ∈ Y :

u(t) ≥ 0, t ∈ J}.

Theorem 3.1 Assume the conditions (H1), (H2) and (H3) are satisfied. There exists a positive

constant R such that FBVP (1.5) has a minimal and maximal positive solution v∗, u∗, respective-

ly, in (0, Rtα−1], which can be given by means of the following two explicit monotone iterative

sequences:

vn+1(t) =

∫ ∞

0

G(t, s)f(t, vn(t), D
α−1
0+ vn(t))ds, with v0(t) = 0, (3.1)

un+1(t) =

∫ ∞

0

G(t, s)f(t, un(t), D
α−1
0+ un(t))ds, with u0(t) = Rtα−1. (3.2)

Moreover,

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ v∗ ≤ · · · ≤ u∗ ≤ · · · ≤ un ≤ · · · ≤ u1 ≤ u0.

Proof First, Lemma 2.5 leads to the fact that (Tu)(t) ≥ 0 for any u ∈ P, t ∈ J . Therefore,

T (P ) ⊂ P .

Next, for 0 ≤ p, q < 1, choose

R ≥ max{3La∗, (3Lb∗)1/(1−p), (3Lc∗)1/(1−q)}

and define B = {u ∈ P, ∥u∥Y ≤ R}. For any u ∈ B, by Lemmas 2.5 and 2.6 [similar to (2.7) and

(2.8)], we obtain

∥Tu∥X = sup
t∈J

∣∣∣ ∫ +∞

0

G(t, s)

1 + tα−1
f(s, u(s), Dα−1

0+ u(s))ds
∣∣∣ ≤ L[a∗ + b∗Rp + c∗Rq] ≤ R

and

sup
t∈J

|Dα−1
0+ u(t)| = sup

t∈J

∣∣∣ ∫ ∞

0

G∗(t, s)f(s, u(s), Dα−1
0+ u(s))ds

∣∣∣ ≤ L[a∗ + b∗Rp + c∗Rq] ≤ R.

This implies that ∥Tu∥Y ≤ R for all u ∈ B. Hence, T (B) ⊂ B.

Let v0(t) = 0, v1(t) = Tv0(t), v2(t) = T 2v0(t) = Tv1(t), for all t ∈ J . Since v0(t) = 0 ∈ B and

T : B → B, we obtain v1 ∈ T (B) ⊂ B and v2 ∈ T (B) ⊂ B. The condition (H3) and definition

of operator T imply that the operator T is nondecreasing. Thus,

v1(t) = Tv0(t) ≥ 0 = v0(t), ∀t ∈ J.

By the nondecreasing property of the operator T , we obtain

v2(t) = Tv1(t) ≥ Tv0(t) = v1(t), ∀t ∈ J.

Define a sequence vn+1(t) = Tvn(t), n = 0, 1, 2, . . . . By induction, the sequence {vn}|∞n ⊂
T (B) ⊂ B and satisfies

vn+1(t) ≥ vn(t), ∀t ∈ J, n = 0, 1, 2, . . . . (3.3)
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By the complete continuity of the operator T , it is easy to determine that {vn}|∞n has a convergent

subsequence {vnk
}|∞k=1 and there exists a v∗ ∈ B such that vnk

→ v∗ as k → ∞. This, together

with (3.3), means that limn→∞ vn = v∗.

Since T is continuous and vn+1 = Tvn, we can obtain Tv∗ = v∗, that is, v∗ is a fixed point

of the operator T .

Define u0(t) = Rtα−1, u1(t) = Tu0(t), u2(t) = T 2u0(t) = Tu1(t), t ∈ J . Since u0(t) ∈ B and

T : B → B, we obtain u1 ∈ T (B) ⊂ B and u2 ∈ T (B) ⊂ B. Using Lemmas 2.5 and 2.6, we

obtain

u1(t) =

∫ +∞

0

G(t, s)f(s, u0(s), D
α−1
0+ u0(s))ds ≤ Ltα−1

∫ +∞

0

f(s, u0(s), D
α−1
0+ u0(s))ds

≤ Ltα−1[a∗ + b∗∥u0∥pY + c∗∥u0∥qY ] ≤ Ltα−1[a∗ + b∗Rp + c∗Rq]

≤ Rtα−1 = u0(t), ∀t ∈ J.

Since T is nondecreasing, we obtain

u2(t) = Tu1(t) ≤ Tu0(t) = u1(t), ∀t ∈ J.

Using the above argument, we define un+1 = Tun, n = 0, 1, 2, . . . . By induction, the sequence

{un}|∞n ⊂ T (B) ⊂ B and satisfies

un+1(t) ≥ un(t), ∀t ∈ J, n = 0, 1, 2, . . . . (3.4)

Similar to earlier arguments, it can be proven that there exists a u∗ such that lim
n→∞

un = u∗.

Since T is continuous and un+1 = Tun, we obtain Tu∗ = u∗, that is, u∗ is a fixed point of

the operator T .

Finally, we infer that u∗ and v∗ are the maximal and minimal positive solutions of FBVP (1.5),

respectively, in (0, Rtα−1]. We first assume that w ∈ (0, Rtα−1] is any positive solution of

FBVP (1.5). Then v0(t) = 0 ≤ w(t) ≤ Rtα−1 = u0(t) and Tw = w. Applying the monotone

property of T , we obtain that v1(t) = Tv0(t) ≤ w(t) ≤ Tu0(t) = u1(t), for all t ∈ J .

Repeating the above step several times, we obtain

vn(t) ≤ w(t) ≤ un(t), t ∈ J, n = 0, 1, 2, . . . . (3.5)

Since u∗ = limn→∞ un and v∗ = limn→∞ vn, it follows from (3.4) and (3.5) that

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ v∗ ≤ w ≤ u∗ ≤ · · · ≤ un ≤ · · · ≤ u1 ≤ u0. (3.6)

Again f(t, 0, 0) ̸= 0 for all t ∈ J , it follows that zero is not a solution of FBVP (1.5). From

(3.6), we know that v∗ and u∗ are the minimal and maximal positive solutions of FBVP (1.5),

respectively, in (0, Rtα−1], which can be established by means of two explicit monotone iterative

sequences in (3.1) and (3.2).

With regard to the difference range of p, q, the method is similar, so we omit the details,

thereby completing the proof. �

Theorem 3.2 Assume the conditions (H1) and (H4) are satisfied. If

m = L(d∗ + e∗) < 1, (3.7)
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then FBVP (1.5) has a unique positive solution u(t) in P . Moreover, there exists a monotone

iterative un(t), such that un(t) → u(t) as n → ∞ uniformly on any finite interval of J , where

un(t) =

∫ ∞

0

G(t, s)f(t, un−1(t), D
α−1
0+ un−1(t))ds. (3.8)

In addition, there exists an error estimate for the approximation sequence

∥un − u∥Y =
mn

1−m
∥u1 − u0∥Y , n = 1, 2, . . . . (3.9)

Proof Choose r ≥ Lλ/(1 −m), where m is defined by (3.7) and λ =
∫ +∞
0

|f(t, 0, 0)|dt < +∞
is defined in condition (H4).

First, we show that TBr ⊂ Br, where Br = {u ∈ P, ∥u∥Y ≤ r}. For any u ∈ Br, by Lemmas

2.5 and 2.7, we obtain

∥Tu∥X ≤ sup
t∈J

∫ +∞

0

G(t, s)

1 + tα−1
|f(s, u(s), Dα−1

0+ u(s))|ds ≤ L[(d∗ + e∗)∥u∥Y + λ] = m∥u∥Y + Lλ

and

sup
t∈J

|Dα−1
0+ u(t)| = sup

t∈J

∣∣∣ ∫ ∞

0

G∗(t, s)f(s, u(s), Dα−1
0+ u(s))ds

∣∣∣ ≤ L[(d∗ + e∗)∥u∥Y + λ]

= m∥u∥Y + Lλ,

which implies

∥Tu∥Y ≤ m∥u∥Y + Lλ ≤ r, ∀u ∈ Br.

We now show that T is a contraction. For any u1, u2 ∈ Br, by condition (H4), we obtain

∥Tu1 − Tu2∥X ≤ sup
t∈J

∫ +∞

0

G(t, s)

1 + tα−1
|f(s, u1(s), D

α−1
0+ u1(s))− f(s, u2(s), D

α−1
0+ u2(s))|ds

≤L

∫ +∞

0

[d(s)(1 + sα−1)
|u1(s)− u2(s)|

1 + sα−1
+ e(s)|Dα−1

0+ u1(s)−Dα−1
0+ u2(s)|]ds

=m∥u1 − u2∥Y

and

sup
t∈J

|Dα−1
0+ u1(t)−Dα−1

0+ u2(t)|

≤ sup
t∈J

∫ ∞

0

G∗(t, s)|f(s, u1(s), D
α−1
0+ u1(s))− f(s, u2(s), D

α−1
0+ u2(s))|ds ≤ m∥u1 − u2∥Y ,

which implies

∥Tu1 − Tu2∥Y ≤ m∥u1 − u2∥Y , ∀u1, u2 ∈ Br. (3.10)

As m < 1, then T is a contraction. Hence, the Banach fixed-point theorem ensures that T has a

unique fixed point u in P . That is, FBVP (1.5) has a unique positive solution u in P .

Furthermore, for any u0 ∈ P, ∥un − u∥Y → 0 as n → ∞, where un = Tun−1 (n = 1, 2, . . .).

From (3.10), we obtain

∥un − un−1∥Y ≤ mn−1∥u1 − u0∥Y ,
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and

∥un − uj∥Y ≤ ∥un − un−1∥Y + ∥un−1 − un−2∥Y + · · ·+ ∥uj+1 − uj∥Y

≤ mn(1−mj−n)

1−m
∥u1 − u0∥Y . (3.11)

Allowing j → ∞ on both sides of (3.11), we obtain

∥un − u∥Y ≤ mn

1−m
∥u1 − u0∥Y .

Hence, the result (3.9) is satisfied, and the proof is completed. �

4. Example

In this section, we provide the following two examples to illustrate our results.

Example 4.1 Consider fractional differential equations on an infinite interval D2.5
0+ u(t) + 2

(10+t)2 + e−2t|u(t)|p

(1+
√
t3)p

+
2t|D1.5

0+
u(t)|q

(3+t2)2 = 0, t ∈ [0,+∞),

u(0) = u′(0) = 0, D1.5
0+ u(+∞) =

∫ +∞
0

t−1.5e−tu(t)dt,
(4.1)

where α = 2.5, h(t) = t−1.5e−t and

f(t, u, v) =
2

(10 + t)2
+

e−2t|u|p

(1 +
√
t3)p

+
2t|v|q

(3 + t2)2
, 0 ≤ p, q ≤ 1.

It is clear that Γ(2.5) = 1.32934 > ∆ =
∫ +∞
0

h(t)t1.5dt = 1, f(t, 0, 0) ̸≡ 0. Hence, the

condition (H1) is satisfied.

We observe that

|f(t, u, v)| ≤ 2

(10 + t)2
+

e−2t|u|p

(1 +
√
t3)p

+
2t|v|q

(3 + t2)2

, a(t) + b(t)|u|p + c(t)|v|q,

a(t) =
2

(10 + t)2
, b(t) =

e−2t

(1 +
√
t3)p

, c(t) =
2t

(3 + t2)2
,

and

a∗ =

∫ +∞

0

a(t)dt =

∫ +∞

0

2

(10 + t)2
dt =

1

5
< +∞,

b∗ =

∫ +∞

0

b(t)(1 + tα−1)pdt =

∫ +∞

0

e−2t

(1 +
√
t3)p

(1 +
√
t3)pdt =

1

2
< +∞,

c∗ =

∫ +∞

0

c(t)dt =

∫ +∞

0

2t

(3 + t2)2
dt =

1

3
< +∞,

which implies that the condition (H2) is satisfied.

From the expression for function f , we can easily determine that f is nondecreasing with

respect to the second and last variables. Therefore, the condition (H3) is satisfied.

Hence by Theorem 3.1, it follows that there exists a positive constant R such that FBVP

(4.1) has minimal and maximal positive solutions v∗, u∗, respectively, in (0, Rtα−1], which can
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be given by means of two explicit monotone iterative sequences in (3.1) and (3.2).

Example 4.2 Consider fractional differential equations on an infinite interval D2.5
0+ u(t) + 2

(10+t)2 + e−10tu(t)

(1+
√
t3)p

+
2tD1.5

0+
u(t)

(10+t2)2 = 0, t ∈ [0,+∞),

u(0) = u′(0) = 0, D1.5
0+ u(+∞) =

∫ +∞
0

t−1.5e−tu(t)dt,
(4.2)

where α = 2.5, h(t) = t−1.5e−t and

f(t, u, v) =
2

(10 + t)2
+

e−10tu

(1 +
√
t3)p

+
2tv

(10 + t2)2
, p > 0.

It is clear that Γ(2.5) = 1.32934 > ∆ =
∫ +∞
0

h(t)t1.5dt = 1, f(t, 0, 0) ̸≡ 0. Hence, the

condition (H1) is satisfied.

Observing that

|f(t, u, v)− f(t, u′, v′)| ≤ e−10t

(1 +
√
t3)p

|u− u′|+ 2t

(10 + t2)2
|v − v′|

, d(t)|u− u′|+ e(t)|v − v′|,

d(t) =
e−2t

(1 +
√
t)p

, e(t) =
2t

(10 + t2)2
,

and

d∗ =

∫ +∞

0

d(t)(1 + tα−1)pdt =

∫ +∞

0

e−10t

(1 +
√
t3)p

(1 +
√
t3)pdt =

1

10
< +∞,

e∗ =

∫ +∞

0

e(t)dt =

∫ +∞

0

2t

(10 + t2)2
dt =

1

10
< +∞,

λ =

∫ +∞

0

f(t, 0, 0)dt =

∫ +∞

0

2

(10 + t)2
dt =

1

5
< +∞,

implies that the condition (H4) is satisfied. By direct computation, we obtain

m = L(d∗ + e∗) = 4.03638× (
1

10
+

1

10
) = 0.80728 < 1.

Therefore, all conditions of Theorem 3.2 are satisfied. Hence, Theorem 3.2 ensures that FBVP

(4.2) has a unique positive solution, which can be obtained by the limits from the iterative

sequences in (3.8).
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