Approximate Quadratic Functional Inequality in β-Homogeneous Normed Spaces

Zhihua WANG
School of Science, Hubei University of Technology, Hubei 430068, P. R. China

Abstract

Using the direct method, we investigate the generalized Hyers-Ulam stability of the following quadratic functional inequality $\|f(x-y)+f(y-z)+f(x-z)-3 f(x)-3 f(y)-3 f(z)\| \leq$ $\|f(x+y+z)\|$ in β-homogeneous complex Banach spaces.

Keywords β-homogeneous space; generalized Hyers-Ulam stability; quadratic functional inequality
MR(2010) Subject Classification 39B82; 39B52

1. Introduction and preliminaries

The stability problems concerning group homomorphisms were raised by Ulam [1] in 1940 and affirmatively answered for Banach spaces by Hyers [2] in the next year. Hyers' result was generalized by Aoki [3] for approximate additive mappings and by Rassias [4] for approximate linear mappings by allowing the Cauchy difference operator $\mathrm{CD}_{f}(x, y)=f(x+y)-[f(x)+f(y)]$ to be controlled by $\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$. In 1994, a generalization of the Rassias' theorem was obtained by Găvruţă [5], who replaced $\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\varphi(x, y)$ in the spirit of the Rassias approach. Since then, the stability of several functional equations has been extensively investigated by several mathematicians [6-9].

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

is called quadratic functional equation. In fact, every solution of the quadratic equation (1.1) is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional equation (1.1) was investigated by Skof [10], Cholewa [11], Czerwik [12] and Lee et al. [13] in different settings. In 2001, Bae and Kim [14] discussed the Hyers-Ulam stability of the quadratic functional equation

$$
\begin{equation*}
f(x+y+z)+f(x-y)+f(y-z)+f(z-x)=3 f(x)+3 f(y)+3 f(z) \tag{1.2}
\end{equation*}
$$

which is equivalent to the original quadratic functional equation (1.1). The hyperstability of a pexiderized σ-quadratic functional equation on semigroups was investigated by El-fassi and

[^0]Brzdȩk [15]. In 2013, Kim et al. [16] introduced the following quadratic functional inequality:

$$
\begin{equation*}
\|f(x-y)+f(y-z)+f(z-x)-3 f(x)-3 f(y)-3 f(z)\| \leq\|f(x+y+z)\| . \tag{1.3}
\end{equation*}
$$

They established the general solution of the quadratic functional inequality (1.3), and then investigated the generalized Hyers-Ulam stability of this inequality in Banach spaces and in non-Archimedean Banach spaces. Recently, the Hyers-Ulam stability problem for the additive functional inequality and the quartic functional equation was discussed by Lee et al. [17], Lu and Park [18] in β-homogeneous F-spaces, respectively. In 2017, Park et al. [19] established the Hyers-Ulam stability of the quadratic ρ-functional inequallites in β-homogeneous normed spaces.

The main purpose of this paper is to establish the generalized Hyers-Ulam stability of the quadratic functional inequality (1.3) in β-homogeneous complex Banach spaces by using the direct method. Our results generalize those results of [16] to β-homogeneous complex Banach spaces.

Definition 1.1 ([17-19]) Let X be a linear space. A nonnegative valued function $\|\cdot\|$ is an F-norm if it satisfies the following conditions:
(FN1) $\|x\|=0$ if and only if $x=0$;
(FN2) $\|\lambda x\|=\|x\|$ for all $x \in X$ and all λ with $|\lambda|=1$;
(FN3) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$;
(FN4) $\left\|\lambda_{n} x\right\| \rightarrow 0$ provided $\lambda_{n} \rightarrow 0$;
(FN5) $\left\|\lambda x_{n}\right\| \rightarrow 0$ provided $x_{n} \rightarrow 0$.
Then $(X,\|\cdot\|)$ is called an F^{*}-space. An F-space is a complete F^{*}-space.
An F-norm is called β-homogeneous $(\beta>0)$ if $\|t x\|=|t|^{\beta}\|x\|$ for all $x \in X$ and all $t \in \mathbb{C}$ (see [20]). A β-homogeneous F-space is called a β-homogeneous complex Banach space [19].

2. Main results

In this section, we prove the stability problem of the quadratic functional inequality (1.3) in β-homogeneous complex Banach space. Let β_{1}, β_{2} be positive real numbers with $\beta_{1} \leq 1$ and $\beta_{2} \leq 1$. Assume that X is a β_{1}-homogeneous real or complex normed space with $\|\cdot\|$ and that Y is a β_{2}-homogeneous complex Banach space with $\|\cdot\|$. Now before taking up the main subject, we need introduce the following lemma.

Lemma 2.1 ([16]) Let V and W be real vector spaces. A mapping $f: V \rightarrow W$ satisfies the functional inequality (1.3) for all $x, y, z \in V$ if and only if f is quadratic.

Theorem 2.2 Let θ_{i} be a nonnegative real number and r_{i} be a positive real number such that $0<r_{i}<\frac{2 \beta_{2}}{\beta_{1}}$ or $r_{i}>\frac{2 \beta_{2}}{\beta_{1}}$ for all $i=1,2,3$. If a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{align*}
& \|f(x-y)+f(y-z)+f(x-z)-3 f(x)-3 f(y)-3 f(z)\| \\
& \quad \leq\|f(x+y+z)\|+\theta_{1}\|x\|^{r_{1}}+\theta_{2}\|y\|^{r_{2}}+\theta_{3}\|z\|^{r_{3}} \tag{2.1}
\end{align*}
$$

for all $x, y, z \in X$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\left(2^{\beta_{2}}+3^{\beta_{2}}\right) \theta_{1}}{\left|4^{\beta_{2}}-2^{r_{1} \beta_{1}}\right|}\|x\|^{r_{1}}+\frac{3^{\beta_{2}} \theta_{2}}{\left|4^{\beta_{2}}-2^{r_{2} \beta_{1}}\right|}\|x\|^{r_{2}}+\frac{2^{\beta_{2}} \theta_{3}}{\left|4^{\beta_{2}}-2^{r_{3} \beta_{1}}\right|}\|x\|^{r_{3}} \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
Proof Assume that $0<r_{i}<\frac{2 \beta_{2}}{\beta_{1}}$. Replacing z by $-x-y$ in (2.1), we have

$$
\begin{align*}
& \|f(x-y)+f(x+2 y)+f(2 x+y)-3 f(x)-3 f(y)-3 f(-x-y)\| \\
& \quad \leq \theta_{1}\|x\|^{r_{1}}+\theta_{2}\|y\|^{r_{2}}+\theta_{3}\|x+y\|^{r_{3}} \tag{2.3}
\end{align*}
$$

for all $x, y \in X$. Letting $y=-x$ and $z=0$ in (2.1), we obtain

$$
\begin{equation*}
\|f(2 x)-2 f(x)-2 f(-x)\| \leq \theta_{1}\|x\|^{r_{1}}+\theta_{2}\|x\|^{r_{2}} \tag{2.4}
\end{equation*}
$$

for all $x \in X$. Putting $y=0$ in (2.3), we have

$$
\begin{equation*}
\|f(2 x)-f(x)-3 f(-x)\| \leq \theta_{1}\|x\|^{r_{1}}+\theta_{3}\|x\|^{r_{3}} \tag{2.5}
\end{equation*}
$$

for all $x \in X$. It follows from (2.4) and (2.5) that

$$
\begin{equation*}
\|f(2 x)-4 f(x)\| \leq\left(2^{\beta_{2}}+3^{\beta_{2}}\right) \theta_{1}\|x\|^{r_{1}}+3^{\beta_{2}} \theta_{2}\|x\|^{r_{2}}+2^{\beta_{2}} \theta_{3}\|x\|^{r_{3}} \tag{2.6}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{4}\right\| \leq \frac{\left(2^{\beta_{2}}+3^{\beta_{2}}\right)}{4^{\beta_{2}}} \theta_{1}\|x\|^{r_{1}}+\frac{3^{\beta_{2}}}{4^{\beta_{2}}} \theta_{2}\|x\|^{r_{2}}+\frac{2^{\beta_{2}}}{4^{\beta_{2}}} \theta_{3}\|x\|^{r_{3}} \tag{2.7}
\end{equation*}
$$

for all $x \in X$. It follows from (2.7) that

$$
\begin{align*}
\left\|\frac{f\left(2^{m} x\right)}{4^{m}}-\frac{f\left(2^{n} x\right)}{4^{n}}\right\| \leq & \frac{\left(2^{\beta_{2}}+3^{\beta_{2}}\right)}{4^{\beta_{2}}} \sum_{j=m}^{n-1} \frac{2^{r_{1} \beta_{1} j}}{4^{\beta_{2} j}} \theta_{1}\|x\|^{r_{1}}+ \\
& \frac{3^{\beta_{2}}}{4^{\beta_{2}}} \sum_{j=m}^{n-1} \frac{2^{r_{2} \beta_{1} j}}{4^{\beta_{2} j}} \theta_{2}\|x\|^{r_{2}}+\frac{2^{\beta_{2}}}{4^{\beta_{2}}} \sum_{j=m}^{n-1} \frac{2^{r_{3} \beta_{1} j}}{4^{\beta_{2} j}} \theta_{3}\|x\|^{r_{3}} \tag{2.8}
\end{align*}
$$

for all nonnegative integers m and n with $n>m$ and all $x \in X$. By virtue of $r_{i}<\frac{2 \beta_{2}}{\beta_{1}}$, it follows from (2.8) that the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ converges. So, one can define a mapping $Q: X \rightarrow Y$ by $Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}$ for all $x \in X$. Moreover, letting $m=0$ and passing the limit $n \rightarrow \infty$ in (2.8), we get

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\left(2^{\beta_{2}}+3^{\beta_{2}}\right) \theta_{1}}{\left(4^{\beta_{2}}-2^{r_{1} \beta_{1}}\right)}\|x\|^{r_{1}}+\frac{3^{\beta_{2}} \theta_{2}}{\left(4^{\beta_{2}}-2^{r_{2} \beta_{1}}\right)}\|x\|^{r_{2}}+\frac{2^{\beta_{2}} \theta_{3}}{\left(4^{\beta_{2}}-2^{r_{3} \beta_{1}}\right)}\|x\|^{r_{3}} \tag{2.9}
\end{equation*}
$$

for all $x \in X$.
Next, we claim that the mapping $Q: X \rightarrow Y$ is quadratic. In fact, it follows from (2.1) that

$$
\begin{aligned}
& \|Q(x-y)+Q(y-z)+Q(x-z)-3 Q(x)-3 Q(y)-3 Q(z)\| \\
& =\lim _{n \rightarrow \infty} \frac{1}{4^{\beta_{2} n}} \| f\left(2^{n}(x-y)\right)+f\left(2^{n}(y-z)\right)+f\left(2^{n}(x-z)\right)- \\
& \quad 3 f\left(2^{n} x\right)-3 f\left(2^{n} y\right)-3 f\left(2^{n} z\right) \|
\end{aligned}
$$

$$
\begin{align*}
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{\beta_{2} n}}\left\|f\left(2^{n}(x+y+z)\right)\right\|+\lim _{n \rightarrow \infty} \frac{2^{r_{1} \beta_{1} n}}{4^{\beta_{2} n}} \theta_{1}\|x\|^{r_{1}}+ \\
& \lim _{n \rightarrow \infty} \frac{2^{r_{2} \beta_{1} n}}{4^{\beta_{2} n}} \theta_{2}\|y\|^{r_{2}}+\lim _{n \rightarrow \infty} \frac{2^{r_{3} \beta_{1} n}}{4^{\beta_{2} n}} \theta_{3}\|z\|^{r_{3}} \\
&=\|Q(x+y+z)\| \tag{2.10}
\end{align*}
$$

Thus, the mapping $Q: X \rightarrow Y$ is quadratic by Lemma 2.1.
Now, let $Q^{\prime}: X \rightarrow Y$ be another quadratic mapping satisfying (2.9). Then, we obtain

$$
\begin{align*}
& \left\|Q(x)-Q^{\prime}(x)\right\|=\frac{1}{2^{2 \beta_{2} n}}\left\|Q\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right)\right\| \\
& \quad \leq \frac{1}{4^{\beta_{2} n}}\left(\left\|Q\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|Q^{\prime}\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right) \\
& \quad \leq \frac{2\left(2^{\beta_{2}}+3^{\beta_{2}}\right) 2^{r_{1} \beta_{1} n}}{4^{\beta_{2} n}\left(4^{\beta_{2}}-2^{r_{1} \beta_{1}}\right)} \theta_{1}\|x\|^{r_{1}}+\frac{2 \cdot 3^{\beta_{2}} 2^{r_{2} \beta_{1} n}}{4^{\beta_{2} n}\left(4^{\beta_{2}}-2^{r_{2} \beta_{1}}\right)} \theta_{2}\|x\|^{r_{2}}+ \\
& \quad \frac{2 \cdot 2^{\beta_{2}} 2^{r_{3} \beta_{1} n}}{4^{\beta_{2} n}\left(4^{\beta_{2}}-2^{r_{3} \beta_{1}}\right)} \theta_{3}\|x\|^{r_{3}} \tag{2.11}
\end{align*}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So, we can conclude that $Q(x)=Q^{\prime}(x)$ for all $x \in X$.

Now, assume that $r_{i}>\frac{2 \beta_{2}}{\beta_{1}}$. It follows from (2.6) that

$$
\begin{equation*}
\left\|f(x)-4 f\left(\frac{x}{2}\right)\right\| \leq \frac{\left(2^{\beta_{2}}+3^{\beta_{2}}\right) \theta_{1}}{2^{r_{1} \beta_{1}}}\|x\|^{r_{1}}+\frac{3^{\beta_{2}} \theta_{2}}{2^{r_{2} \beta_{1}}}\|x\|^{r_{2}}+\frac{2^{\beta_{2}} \theta_{3}}{2^{r_{3} \beta_{1}}}\|x\|^{r_{3}} \tag{2.12}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|4^{m} f\left(\frac{x}{2^{m}}\right)-4^{n} f\left(\frac{x}{2^{n}}\right)\right\| \leq & \frac{\left(2^{\beta_{2}}+3^{\beta_{2}}\right)}{2^{r_{1} \beta_{1}}} \sum_{j=m}^{n-1} \frac{4^{\beta_{2} j}}{2^{r_{1} \beta_{1} j}} \theta_{1}\|x\|^{r_{1}}+ \\
& \frac{3^{\beta_{2}}}{2^{r_{2} \beta_{1}}} \sum_{j=m}^{n-1} \frac{4^{\beta_{2} j}}{2^{r_{2} \beta_{1} j}} \theta_{2}\|x\|^{r_{2}}+\frac{2^{\beta_{2}}}{2^{r_{3} \beta_{1}}} \sum_{j=m}^{n-1} \frac{4^{\beta_{2} j}}{2^{r_{3} \beta_{1} j}} \theta_{3}\|x\|^{r_{3}} \tag{2.13}
\end{align*}
$$

for all $x \in X$. Define $Q: X \rightarrow Y$ by $Q(x):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)$ for all $x \in X$. Letting $m=0$ and passing the limit $n \rightarrow \infty$ in (2.13), we get

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\left(2^{\beta_{2}}+3^{\beta_{2}}\right) \theta_{1}}{\left(2^{r_{1} \beta_{1}}-4^{\beta_{2}}\right)}\|x\|^{r_{1}}+\frac{3^{\beta_{2}} \theta_{2}}{\left(2^{r_{2} \beta_{1}}-4^{\beta_{2}}\right)}\|x\|^{r_{2}}+\frac{2^{\beta_{2}} \theta_{3}}{\left(2^{r_{3} \beta_{1}}-4^{\beta_{2}}\right)}\|x\|^{r_{3}} \tag{2.14}
\end{equation*}
$$

for all $x \in X$. The rest of the proof is similar to the proof for the case $0<r_{i}<\frac{2 \beta_{2}}{\beta_{1}}$. By (2.9) and (2.14), we obtain the approximation (2.2) of f by Q, as desired. This completes the proof of the theorem.

Corollary 2.3 Let $\theta \geq 0$ be fixed. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ such that

$$
\begin{equation*}
\|f(x-y)+f(y-z)+f(x-z)-3 f(x)-3 f(y)-3 f(z)\| \leq\|f(x+y+z)\|+\theta \tag{2.15}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{2^{\beta_{2}}+3^{\beta_{2}}}{\left|4^{\beta_{2}}-1\right|} \theta \tag{2.16}
\end{equation*}
$$

for all $x \in X$.

From now on, assume that X is a β-homogeneous real or complex normed space and that Y is a β-homogeneous complex Banach space. We prove the stability problem of the quadratic inequality (1.3) with perturbed control function φ.

Theorem 2.4 Let $\varphi: X^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{align*}
& \sum_{j=0}^{\infty} \frac{1}{4^{j \beta}} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z\right)<\infty \\
& \left(\sum_{j=1}^{\infty} 4^{j \beta} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}, \frac{z}{2^{j}}\right)<\infty, \text { resp. }\right) \tag{2.17}
\end{align*}
$$

for all $x, y, z \in X$. Suppose that a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{align*}
& \|f(x-y)+f(y-z)+f(x-z)-3 f(x)-3 f(y)-3 f(z)\| \\
& \quad \leq\|f(x+y+z)\|+\varphi(x, y, z) \tag{2.18}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{align*}
& \|f(x)-Q(x)\| \leq \frac{1}{4^{\beta}} \sum_{j=0}^{\infty} \frac{1}{4^{j \beta}}\left\{3^{\beta} \varphi\left(2^{j} x,-2^{j} x, 0\right)+2^{\beta} \varphi\left(2^{j} x, 0,-2^{j} x\right)\right\} \tag{2.19}\\
& \left(\|f(x)-Q(x)\| \leq \frac{1}{4^{\beta}} \sum_{j=1}^{\infty} 4^{j \beta}\left\{3^{\beta} \varphi\left(\frac{x}{2^{j}},-\frac{x}{2^{j}}, 0\right)+2^{\beta} \varphi\left(\frac{x}{2^{j}}, 0,-\frac{x}{2^{j}}\right)\right\}, \text { resp. }\right)
\end{align*}
$$

for all $x \in X$.
Proof Replacing z by $-x-y$ in (2.18), we have

$$
\begin{equation*}
\|f(x-y)+f(x+2 y)+f(2 x+y)-3 f(x)-3 f(y)-3 f(-x-y)\| \leq \varphi(x, y,-x-y) \tag{2.20}
\end{equation*}
$$

for all $x, y \in X$. Letting $y=-x$ and $z=0$ in (2.18), we obtain

$$
\begin{equation*}
\|f(2 x)-2 f(x)-2 f(-x)\| \leq \varphi(x,-x, 0) \tag{2.21}
\end{equation*}
$$

for all $x \in X$. Putting $y=0$ in (2.20), we have

$$
\begin{equation*}
\|f(2 x)-f(x)-3 f(-x)\| \leq \varphi(x, 0,-x) \tag{2.22}
\end{equation*}
$$

for all $x \in X$. It follows from (2.21) and (2.22) that

$$
\begin{equation*}
\|f(2 x)-4 f(x)\| \leq 3^{\beta} \varphi(x,-x, 0)+2^{\beta} \varphi(x, 0,-x) \tag{2.23}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{4}\right\| \leq \frac{1}{4^{\beta}}\left\{3^{\beta} \varphi(x,-x, 0)+2^{\beta} \varphi(x, 0,-x)\right\} \tag{2.24}
\end{equation*}
$$

for all $x \in X$. It follows from (2.24) that for all nonnegative integers n and m with $n>m$

$$
\begin{align*}
& \left\|\frac{f\left(2^{m} x\right)}{4^{m}}-\frac{f\left(2^{n} x\right)}{4^{n}}\right\| \leq \sum_{j=m}^{n-1} \frac{1}{4^{j \beta}}\left\|f\left(2^{j} x\right)-\frac{f\left(2^{j+1} x\right)}{4}\right\| \\
& \quad \leq \frac{1}{4^{\beta}} \sum_{j=m}^{n-1} \frac{1}{4^{j \beta}}\left\{3^{\beta} \varphi\left(2^{j} x,-2^{j} x, 0\right)+2^{\beta} \varphi\left(2^{j} x, 0,-2^{j} x\right)\right\} \tag{2.25}
\end{align*}
$$

for all $x \in X$. It means that the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ converges in Y. Therefore, we can define a mapping $Q: X \rightarrow Y$
by $Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}$ for all $x \in X$. Moreover, letting $m=0$ and taking the limit $n \rightarrow \infty$ in (2.25), we obtain the inequality (2.19), as desired.

By (2.17) and (2.18), we have

$$
\begin{align*}
&\|Q(x-y)+Q(y-z)+Q(x-z)-3 Q(x)-3 Q(y)-3 Q(z)\| \\
&= \lim _{n \rightarrow \infty} \frac{1}{4^{n \beta}} \| f\left(2^{n}(x-y)\right)+f\left(2^{n}(y-z)\right)+f\left(2^{n}(x-z)\right)- \\
& 3 f\left(2^{n} x\right)-3 f\left(2^{n} y\right)-3 f\left(2^{n} z\right) \| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n \beta}}\left\|f\left(2^{n}(x+y+z)\right)\right\|+\lim _{n \rightarrow \infty} \frac{1}{4^{n \beta}} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right) \\
&=\|Q(x+y+z)\| . \tag{2.26}
\end{align*}
$$

By Lemma 2.1, the mapping $Q: X \rightarrow Y$ is quadratic.
Next, we show that the uniqueness of Q. Let $Q^{\prime}: X \rightarrow Y$ be another quadratic mapping satisfying (2.19). Then, we obtain

$$
\begin{align*}
& \left\|Q(x)-Q^{\prime}(x)\right\|=\frac{1}{4^{n \beta}}\left\|Q\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right)\right\| \\
& \quad \leq \frac{1}{4^{n \beta}}\left(\left\|Q\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|Q^{\prime}\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right) \\
& \quad \leq \frac{2}{4^{\beta}} \sum_{j=0}^{\infty} \frac{1}{4^{(j+n) \beta}}\left\{3^{\beta} \varphi\left(2^{j+n} x,-2^{j+n} x, 0\right)+2^{\beta} \varphi\left(2^{j+n} x, 0,-2^{j+n} x\right)\right\} \\
& \quad=\frac{2}{4^{\beta}} \sum_{j=n}^{\infty} \frac{1}{4^{j \beta}}\left\{3^{\beta} \varphi\left(2^{j} x,-2^{j} x, 0\right)+2^{\beta} \varphi\left(2^{j} x, 0,-2^{j} x\right)\right\} \tag{2.27}
\end{align*}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. Hence $Q(x)=Q^{\prime}(x)$ for all $x \in X$. This completes the proof of the theorem.

Corollary 2.5 Let $\varepsilon_{i} \geq 0$ be a real number and λ_{i} be a positive real number with $\lambda_{i}<2$ or $\lambda_{i}>2$ for all $i=1,2,3$. If a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{align*}
& \|f(x-y)+f(y-z)+f(x-z)-3 f(x)-3 f(y)-3 f(z)\| \\
& \quad \leq\|f(x+y+z)\|+\varepsilon_{1}\|x\|^{\lambda_{1}}+\varepsilon_{2}\|y\|^{\lambda_{2}}+\varepsilon_{3}\|z\|^{\lambda_{3}} \tag{2.28}
\end{align*}
$$

for all $x, y, z \in X$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\left(2^{\beta}+3^{\beta}\right) \varepsilon_{1}}{\left|4^{\beta}-2^{\lambda_{1} \beta}\right|}\|x\|^{\lambda_{1}}+\frac{3^{\beta} \varepsilon_{2}}{\left|4^{\beta}-2^{\lambda_{2} \beta}\right|}\|x\|^{\lambda_{2}}+\frac{2^{\beta} \varepsilon_{3}}{\left|4^{\beta}-2^{\lambda_{3} \beta}\right|}\|x\|^{\lambda_{3}} \tag{2.29}
\end{equation*}
$$

for all $x \in X$.
Proof Define $\varphi(x, y, z):=\varepsilon_{1}\|x\|^{\lambda_{1}}+\varepsilon_{2}\|y\|^{\lambda_{2}}+\varepsilon_{3}\|z\|^{\lambda_{3}}$ and apply Theorem 2.4 to get the result.

Acknowledgements The author thanks the referees for their time and comments.

References

[1] S. M. ULAM. Problems in Modern Mathematics, Chapter VI. Science Editions, Wiley, New York, 1964.
[2] D. H. HYERS. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A., 1941, 27(4): 222-224.
[3] T. AOKI. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 1950, 2(1-2): 64-66.
[4] TH. M. RASSIAS. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 1978, 72(2): 297-300.
[5] P. GĂVRUŢĂ. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 1994, 184(3): 431-436.
[6] J. BRZDȨK, D. POPA, I. RASA, et al. Ulam Stability of Operators, Mathematical Analysis and Its Applications, vol.1. Academic Press, Elsevier, Oxford, 2018.
[7] D. H. HYERS, G. ISAC, TH. M. RASSIAS. Stability of Functional Equations in Several Variables. Birkhäuser, Basel, 1998.
[8] S. M. JUNG. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Science, New York, 2011.
[9] PL. KANNAPPAN. Functional Equations and Inequalities with Applications. Springer Science, New York, 2009.
[10] F. SKOF. Local properties and approximations of operators. Rend. Sem. Mat. Fis. Milano, 1983, 53: 113-129.
[11] P. W. CHOLEWA. Remarks on the stability of functional equations. Aequationes Math., 1984, 27(1-2): 76-86.
[12] S. CZERWIK. On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg, 1992, 62(1): 59-64.
[13] J. R. LEE, S. Y. JANG, C. PARK, et al. Fuzzy stability of quadratic functional equations. Adv. Differ. Equ., 2010, 2010, Art. ID 412160, 16 pp.
[14] J. H. BAE, H. M. KIM. On the generalized Hyers-Ulam stability of a quadratic mapping. Far East J. Math. Sci., 2001, 3(4): 599-608.
[15] I. EL-FASSI, J. BRZDȨK. On the hyperstability of a pexiderized σ-quadratic functional equation on semigroups. Bull. Australian Math. Soc., 2018, 97(3): 459-470.
[16] H. M. KIM, K. W. JUN, E. SON. Generalized Hyers-Ulam stability of quadratic functional inequality. Abstr. Appl. Anal. 2013, Art. ID 564923, 8 pp.
[17] J. R. LEE, C. PARK, D. Y. SHIN. Correction: Nearly quartic mappings in β-homoggeneous F-spaces. Result. Math., 2013, 64(3-4): 435-440.
[18] Gang LU, C. PARK. Functional inequality in β-homoggeneous F-spaces. J. Comput. Anal. Appl., 2014, 17(1): 280-286.
[19] C. PARK, Gang LU, Yinhua CUI, et al. Quadratic ρ-functional inequalities in β-homogeneous normed spaces. J. Nonlinear Sci. Appl., 2017, 10(1): 104-110.
[20] S. ROLEWICZ. Metric Linear Spaces. PWN-Polish Scientific Publishers, Warsaw, 1972.

[^0]: Received December 8, 2018; Accepted September 4, 2019
 Supported by the National Natural Science Foundation of China (Grant No. 11401190) and Humanities and Social Sciences of Ministry of Education Planning Fund (Grant No. 17YJA790098).
 E-mail address: matwzh2000@126.com

