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Abstract In this paper, we consider the indefinite least squares problem with quadratic con-

straint and its condition numbers. The conditions under which the problem has the unique

solution are first presented. Then, the normwise, mixed, and componentwise condition numbers

for solution and residual of this problem are derived. Numerical example is also provided to

illustrate these results.
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1. Introduction

The indefinite least squares problem with quadratic constraint (ILSQC) can be stated as

follows:

min
x∈Rn

(b−Ax)TJ(b−Ax), subject to ∥Cx− d∥2 = γ, (1.1)

where A ∈ Rm×n with m ≥ n, C ∈ Rs×n, b ∈ Rm, d ∈ Rs, γ > 0 and J is a signature matrix

defined by

J =

[
Ip 0

0 −Iq

]
, p+ q = m.

The ILSQC problem can be reduced to the general least squares problem with quadratic con-

straint (LSQC) by setting J = Im, which can be arise in a variety of applications, such as

smoothing of noisy data, the solution of discretized ill-posed problems from inverse problem, and

in trust region methods for nonlinear least squares problems [1]. The ILSQC problem can also

be converted to the indefinite least squares (ILS) problem by removing the quadratic constraint.

The LSQC problem was first investigated by Å. Björck [1]. Gander [2] presented the con-

ditions under which the problem has the unique solution. Later, some scholars also considered

this problem and its varants. For example, Golub and von Matt [3] discussed this problem from
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the view of the theory of Gauss quadrature; Schöne and Hanning [4] studied the least squares

problem with absolute quadratic constraints and its applications; Chan et al. [5] presented an al-

gorithm for solving LSQC problem and derived a formula for estimating the Lagrange multiplier;

Mead and Renaut [6] discussed the least squares problem with inequality constraints as quadratic

constraints. Recently, Diao [7] considered the condition numbers for the least squares problem

with quadratic inequality constraint and presented the expressions of normwise, mixed and com-

ponentwise condition numbers. It is worth to mention that the systematic theory for normwise

condition number was first given by Rice [8] and the terminologies of mixed and componentwise

condition numbers were first introduced by Gohberg and Koltracht [9].

The ILS problem was first introduced by Chandrasekaran et al. [10], which has many im-

portant applications. For example, it can be used to solve the total least squares problem [11].

Later many researchers have paid attention to the perturbation analysis and the condition num-

bers for the total least squares problem; see [12–14] and the references therein. In literature,

some scholars investigated the numerical algorithms, stability of algorithms, and perturbation

analysis of ILS problem [15–18]. Bojanczyk et al. [19] and Grcar [20] discussed its normwise

condition number and Li et al. [21] considered its mixed and componentwise condition numbers.

Recently, Li and Wang [22] obtained the partial unified condition numbers for the ILS problem.

Some results of the paper were recovered by Diao and Zhou [23] by using the dual techniques of

condition number theory, and some results were extended to the equality constrained indefinite

least squares problem by Wang and Yang [24].

However, to our best knowledge, there is no work on the solution and condition numbers

of ILSQC problem so far. In this paper, we will study the solution of ILSQC problem and its

condition numbers. Specifically, we will discuss the condition of the uniqueness of the solution

of this problem in Section 3 and provide the expressions of normwise, mixed and componentwise

condition numbers for solution in Section 4. The expressions of normwise, mixed and compo-

nentwise condition numbers for residual are given in Section 5. In addition, Section 2 presents

some preliminaries and Section 6 gives a numerical example to illustrate the obtained results.

2. Notations and preliminaries

In this section, we first introduce the definitions of the three condition numbers mentioned

in Section 1. To this end, we need the following notations. The first one is the entry-wise

division [25] between the vectors a ∈ Rp and b = [b1, . . . , bp] ∈ Rp defined by

a

b
= diag(b‡)a,

where diag(b‡) is diagonal with diagonal elements b‡1, . . . , b
‡
p. Here, for a number c ∈ R, c‡ is

defined by

c‡ =

{
1
c , if c ̸= 0,

1, if c = 0.
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Thus, we can define the relative distance between a and b as

d(a, b) = ∥a− b

b
∥∞ = max

1≤i≤p
{ |ai − bi|

|bi|
}.

When d(a, b) <∞, d(a, b) can be written as

d(a, b) = min{δ ≥ 0 | |ai − bi| ≤ δ|bi|, i = 1, . . . , p}.

In addition, for ε > 0, we denote B◦(a, ε) = {x | d(x, a) 6 ε} and B(a, ε) = {x | ∥x − a∥2 6
ε∥a∥2}.

Definition 2.1 ([9, 25, 26]) Let F : Rp → Rq be a continuous mapping defined on an open set

Dom(F ) ⊂ Rp with Dom(F ) denoting the domain of definition of function F and a ∈ Dom(F )

satisfy a ̸= 0 and F (a) ̸= 0.

(i) The normwise condition number of F at a is defined by

κ(F, a) = lim
ε→0

sup
x∈B(a,ε)

x̸=a

(
∥F (x)− F (a)∥2

∥F (a)∥2
/
∥x− a∥2
∥a∥2

).

(ii) The mixed condition number of F at a is defined by

m(F, a) = lim
ε→0

sup
x∈Bo(a,ε)

x ̸=a

∥F (x)− F (a)∥∞
∥F (a)∥∞

1

d(x, a)
.

(iii) The componentwise condition number of F at a is defined by

c(F, a) = lim
ε→0

sup
x∈Bo(a,ε)

x ̸=a

d(F (x), F (a))

d(x, a)
.

In order to give the expressions of the mixed and componentwise condition numbers, the

following definition of the Fréchet derivative is necessary.

Definition 2.2 ([27]) Suppose that F is a mapping, F : U ∈ Rp → Rq with U being an open

set. Then F is said to be Fréchet differentiable at a ∈ U if there exists a bounded linear operator

DF : Rp → Rq such that

lim
h→0

∥F (a+ h)− F (a)−DF (h)∥
∥h∥

= 0.

When F is Fréchet differentiable at a, we use the notation DF (a) to denote the Fréchet derivative

or derivative of F at a.

With the Fréchet derivative, the following lemma gives the explicit representations of these

three condition numbers.

Lemma 2.3 ([25]) With the same assumptions as in Definition 2.1, and supposing that F is

Fréchet differentiable at a, we have

κ(F, a) =
∥DF (a)∥2∥a∥2

∥F (a)∥2
,

m(F, a) =
∥DF (a)diag(a)∥∞

∥F (a)∥∞
=

∥|DF (a)||a|∥∞
∥F (a)∥∞

,
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c(F, a) = ∥diag‡(F (a))DF (a)diag(a)∥∞ = ∥ |DF (a)||a|
|F (a)|

∥∞,

where DF (a) is the Fréchet derivative of F at a and |a| is to take the absolute value of elements

in a.

Recall that for any matrix A = [a1, . . . , an] ∈ Rm×n with ai ∈ Rm, the operator vec is defined

by

vec(A) = [aT1 , . . . , a
T
n ]

T ∈ Rmn,

and the Kronecker product between A = (aij) ∈ Rm×n and B ∈ Rp×q is defined by A ⊗ B =

[aijB] ∈ Rmp×nq.

To obtain the explicit expressions of the above condition numbers, we need some properties of

Kronecker product , we need some properties of the operator vec and Kronecker product [28–31]

|A⊗B| = |A| ⊗ |B|, (2.1)

vec(AXB) = (BT ⊗A)vec(X), (2.2)

Πmnvec(A) = vec(AT ), (2.3)

where the notation |A| is a matrix whose components are the absolute values of the corresponding

components of A, and X ∈ Rn×p, and Πst ∈ Rst×st is the vec-permutation matrix which depends

only on the dimensions s and t.

In addition, we also need the following three lemmas.

Lemma 2.4 ([26]) For any matrices U, V, C, D, R and S with dimensions making the following

well defined

[U ⊗ V + (C ⊗D)Π]vec(R),

[U ⊗ V + (C ⊗D)Π]vec(R)

S
,

V RUT and DRTCT ,

we have

∥|[U ⊗ V + (C ⊗D)Π]|vec(|R|)∥∞ ≤ ∥vec(|V ||R||U |T + |D||R|T |C|T )∥∞

and

∥ |[U ⊗ V + (C ⊗D)Π]|vec(|R|)
|S|

∥∞ ≤ ∥vec(|V ||R||U |T + |D||R|T |C|T )
|S|

∥∞.

In the following, we will define the the product norm to measure the input data [A, b]. Let α

and β be two positive real numbers, for the data space Rm×n × Rm, then

∥(A, b)∥F =
√
α2∥A∥2F + β2∥b∥2F . (2.4)

Lemma 2.5 ([7]) Let V ∈ Rm×n, X ∈ Rn×m, Y ∈ Rn×n, s ∈ Rn, t ∈ Rm, u ∈ Rn, and define

the linear operator l by

l(V, u) := −XV s+ Y V T t+Xu. (2.5)
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where α and β are positive real numbers. Then, the spectral norm of l is

∥l∥2 = sup
V ̸=0,u̸=0

∥l(V, u)∥2
∥(V, u)∥F

=

∥∥∥∥∥
[
− 1

β
∥s∥2X,

1

α
∥t∥2Y

] [
c1Im − c2

ttT

0∥t∥
2
2

α
β

tsT

∥t∥2∥s∥2

0 In

]∥∥∥∥∥
2

, (2.6)

where c1 =
√

β2

α2 + 1
∥s∥2

2
and c2 = c1 +

1
∥s∥2

.

Lemma 2.6 ([32, Page 171, Theorem 3]) Let T be the set of non-singular real m×m matrices,

and S be an open subset of Rn×q. If the matrix function G : S → T is k times (continuously)

differentiable on S, then so is the matrix function G−1 : S → T defined by G−1(X) = (G(X))−1,

and

dG−1 = −G−1(dG)G−1,

where dG is the differential of G.

3. Solution to ILSQC problem

We first show that the solution x to ILSQC problem (1.1) is the same as the one to the

generalized normal equation (3.1) as done in [33, Theorem 2.6.1].

Theorem 3.1 Let x be the solution to ILSQC problem (1.1) and xλ be the solution to the

following generalized normal equation

(ATJA+ λCTC)xλ = ATJb+ λCT d, (3.1)

Then x = xλ, where the parameter λ > 0 is determined by the secular equation

∥Cxλ − d∥2 = γ2.

Proof Using the method of Lagrange multipliers, we consider the function

L(x, λ) := (b−Ax)TJ(b−Ax) + λ{∥Cx− d∥2 − γ2},

where λ > 0 is a Lagrange multiplier. Setting the gradient of L(x, λ) with respect to x to be

zero gives (3.1) where λ is obtained by solving the secular equation. So the solutions of ILSQC

problem (1.1) and the generalized normal equation (3.1) are the same. �
In the following, we present two properties of the solution to the generalized normal equation

(3.1), from which we can obtain the condition under which the ILSQC problem (1.1) has the

unique solution.

Lemma 3.2 If (x1, λ1) and (x2, λ2) are two solutions of the normal equation (3.1), then

(b−Ax2)
TJ(b−Ax2)− (b−Ax1)

TJ(b−Ax1) =
λ1 − λ2

2
∥C(x1 − x2)∥2. (3.2)

Proof Since (x1, λ1) and (x2, λ2) are solutions of (3.1), we have

ATJAx1 −ATJb = −λ1CTCx1 + λ1C
T d, (3.3)

and

ATJAx2 −ATJb = −λ2CTCx2 + λ2C
T d. (3.4)
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If we multiply (3.4) by xT2 and (3.3) by xT1 , and subtract the resulting second equation from the

first one, we obtain

xT2 A
TJAx2−xT1 ATJAx1− bTJA(x2−x1) = λ1[∥Cx1∥2−dTCx1]−λ2[∥Cx2∥2−dTCx2]. (3.5)

Similarly, by multiplying (3.3) by xT2 and (3.4) by xT1 , and subtracting the resulting second

equation from the first one, we get

−bTJA(x2 − x1) = λ1(−xT2 CTCx1 + dTCx2)− λ2(−xT1 CTCx2 + dTCx1). (3.6)

Observe that

(b−Ax2)
TJ(b−Ax2)− (b−Ax1)

TJ(b−Ax1)

= xT2 A
TJAx2 − xT1 A

TJAx1 − 2bTJA(x2 − x1).

Thus putting (3.5) and (3.6) together leads to

(b−Ax2)
TJ(b−Ax2)− (b−Ax1)

TJ(b−Ax1)

= λ1{∥Cx1∥2 − dTCx1 − xT2 C
TCx1 + dTCx2}−

λ2{∥Cx2∥2 − dTCx2 − xT1 C
TCx2 + dTCx1}. (3.7)

On the other hand, we also have

∥Cx1 − d∥2 = ∥Cx2 − d∥2,

which yields

∥Cx1∥2 − dTCx1 + dTCx2 = ∥Cx2∥2 − dTCx2 + dTCx1. (3.8)

From (3.8), we obtain that the multiplier factors of λ1 and λ2 in (3.7) are the same, which is

also equal to their arithmetic mean:

1

2
{∥Cx1∥2 − 2xT1 C

TCx2 + ∥Cx2∥2} =
1

2
∥C(x1 − x2)∥2. (3.9)

From equations (3.7) and (3.9), we obtain our required result (3.2). �

Lemma 3.3 If (x1, λ1) and (x2, λ2) are two solutions of the normal equation (3.1), then

(λ1 + λ2){(b−Ax2)
TJ(b−Ax2)− (b−Ax1)

TJ(b−Ax1)}

= (λ2 − λ1)(x2 − x1)
TATJA(x2 − x1). (3.10)

Proof Since (x1, λ1) and (x2, λ2) are solutions of the normal equation (3.1), we have

λ1C
TCx1 − λ1C

T d = −ATJAx1 +ATJb (3.11)

and

λ2C
TCx2 − λ2C

T d = −ATJAx2 +ATJb. (3.12)

If we multiply (3.11) by λ1x
T
1 and (3.12) by λ2x

T
2 and subtract the resulting second equation

from the first one, we obtain

λ1λ2(x2 − x1)
TCdT = (λ2 − λ1)x

T
1 A

TJAx2 + (λ1x1 − λ2x2)
TATJb. (3.13)
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Similarly by multiplying (3.11) by λ1x
T
2 and (3.12) by λ2x

T
1 and subtracting the resulting second

equation from the first one, we get

λ1λ2{∥Cx2∥2 − ∥Cx1∥2 + (x1 − x2)
TCdT }

= λ2x
T
1 A

TJAx1 − λ1x
T
2 A

TJAx2 + (λ1x2 − λ2x1)
TATJb. (3.14)

Observe that 0 = ∥Cx2 − d∥2 − ∥Cx2 − d∥2 = ∥Cx2∥2 − ∥Cx1∥2 + 2(x1 − x2)
TCT d. Thus,

subtracting (3.13) from (3.14), we obtain

λ1(x
T
2 A

TJAx2 − xT2 A
TJb+ xT1 A

TJb− xT1 A
TJAx2)

= λ2(x
T
1 A

TJAx1 − xT1 A
TJb− xT2 A

TJb− xT1 A
TJAx2). (3.15)

Note that the left hand side of (3.15) can be rewritten as

1

2
{(b−Ax2)

TJ(b−Ax2)− (b−Ax1)
TJ(b−Ax1) + (x2 − x1)

TATJA(x2 − x1)}λ1.

The case for the right hand side of (3.15) is similar. Putting them together, we obtain (3.10). �
With the help of the results in the above two lemmas, we now give the condition of the

uniqueness of the solution of the ILSQC problem (1.1).

Theorem 3.4 If the following condition holds

rank

(
ATJA

C

)
= n, (3.16)

then the solution x to the ILSQC problem (1.1) is unique.

Proof Assume (x1, λ1) and (x2, λ2) are solutions of the normal equation (3.1) which also solve

the ILSQC problem (1.1). If λ1 ̸= λ2, then we have

(b−Ax1)
TJ(b−Ax1) = (b−Ax2)

TJ(b−Ax2) = min
x∈Rn

(b−Ax)TJ(b−Ax).

By Eq. (3.2), we obtain

∥C(x1 − x2)∥2 = 0. (3.17)

While Eq. (3.10) implies that

(x2 − x1)
TATJA(x2 − x1) = 0. (3.18)

Eqs. (3.17) and (3.18) are equivalent to(
ATJA

C

)
(x2 − x1) = 0. (3.19)

If x1 ̸= x2 then (3.17) and (3.18) shows ATJA and C have non-trivially intersecting null space,

which is a contradiction. If λ1 = λ2 = λ than from (3.1), we have

(ATJA+ λCTC)x1 = ATJb+ λCT d,

(ATJA+ λCTC)x2 = ATJb+ λCT d.



64 Mahvish SAMAR, Aamir FAROOQ, Chunlai MU and et al.

Subtracting the above equations, we obtain

(ATJA+ λCTC)(x1 − x2) = 0.

If x1 ̸= x2 then λ = −λ′, which is also a contradiction. Therefore we must have x1 = x2

and λ1 = λ2. Hence ATJA and C have a trivially intersection of their nullspaces because the

condition (3.16). �

4. Condition numbers for ILSQC problem

We first present the explicit asseveration for the Fréchet derivative of the mapping ϕ defined

by:

(a, c, b, d) → ϕ(a, c, b, d) = x(a, c, b, d) = Q(A,C)(ATJb+ λCT d), (4.1)

where (ATJA+λCTC) is nonsingular and Q(A,C) = (ATJA+λCTC)−1 with a = vec(A), and

c = vec(C).

Lemma 4.1 The Fréchet derivative of the mapping ϕ at (a, c, b, d) has the following matrix

expression

dϕ(a, c, b, d) = [F (A,C, b, d), G(A,C, b, d), Q(A,C)KATJ,Q(A,C)(λKCT + l)],

where

F (A,C, b, d) = Q(A,C)K(In ⊗ (Jr1)
T − xT ⊗ATJ),

G(A,C, b, d) = Q(A,C)(λ(K ⊗ rT2 )− (xT ⊗ (λKCT + l)),

r1 = b−Ax, r2 = d− Cx, K = In − CT r2r
T
2 CQ(A,C)

rT2 CQ(A,C)CT r2
, l =

CT r2r
T
2

rT2 CQ(A,C)CT r2
.

Proof It is easy to find that the mapping ϕ is continuous on Rmn×Rsn×Rm×Rs and is Fréchet

differentiable at (a, c, b, d). In the following, we give the expression of the Fréchet derivative of

ϕ at (a, c, b, d). Firstly, we obtain the derivative of λ in Q(A,C) = (ATJA + λCTC)−1 with

respect to (a, c, b, d). Note that

γ2 = ∥Cx− d∥22 = ∥CQ(A,C)(ATJA+ λCTC)−1 − d∥22

and γ is constant. Thus, differentiating both sides of the above equation, we can deduce

0 = 2(Cx− d)Td(Cx− d)

= 2(Cx− d)T (d(C)x+ Cdx− dd)

= −2rT2 (d(C)x+Cd
(
Q(A,C)(ATJb+ λCT d)

)
− dd)

= −2rT2
{
d(C)x+ C[−(Q(A,C)d(ATJA+ λCTC)x+Q(A,C)d(AT b+ λCT d)]− dd)

}
= −2rT2 {d(C)x+ CQ(A,C)[−(dATJA+ATJdA+ dλCTC + λdCTC + λCTdC)x]+

CQ(A,C)[dATJb+ATJdb+ dλCT d+ λdCT d+ λCTdd]− dd}

= −2rT2 {d(C)x+ CQ(A,C)[dATJr1 + dλCT r2 +ATJ(db− dAx) + λdCT r2+

λCT (dd− dCx)]− dd}.
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From the above equation, we obtain the expression for dλ:

dλ =
−rT2 {d(C)x+ CQ(A,C)[dATJr1 +ATJ(db− dAx) + λdCT r2 + λCT (dd− dCx)]− dd}

rT2 CQ(A,C)CT r2
.

(4.2)

Now, differentiating both sides of ϕ(A,C, b, d) = Q(A,C)(ATJb+ λCT d) leads to

dϕ(a, c, b, d) = d[Q(A,C)(ATJb+ λCT d)

= Q(A,C)[dATJr1 + dλCT r2 +ATJ(db− dAx) + λdCT r2 + λCT (dd− dCx)],

Bringing together (4.2) into the above equation and after rearranging, we get

dϕ(a, c, b, d) =Q(A,C)K[dATJr1 +ATJ(db− dAx) + λdCT r2 + λCT (dd− dCx)]−

Q(A,C)l(dCx− dd)

=Q(A,C){K[dATJr1 +ATJ(db− dAx) + λdCT r2 + λCT (dd− dCx)]−

l(dCx− dd)}

=Q(A,C){K[dATJr1 +ATJ(db− dAx)] + λKdCT r2 − (λKCT + l)dCx+

(λKCT + l)dd)}.

Applying vec operator on the both sides of the above equation and using (2.2) and (2.3) gives

dϕ =Q(A,C)[−(xT ⊗ (KATJ))vec(dA) + (JrT1 ⊗K)vec(dAT )− (xT ⊗ (λKCT + l))vec(dC)+

λ(rT2 ⊗K)vec(dCT ) +KATJdb+ (KCT + l)dd] by (3)

=Q(A,C)[−xT ⊗ (KATJ) + (JrT1 ⊗K)Π]vec(dA) + [−(xT ⊗ (λKCT + l)) + λ(rT2 ⊗K)Π]vec(dC)+

KATJdb+ (λKCT + l)dd)] by (2.3)

=Q(A,C)[K ⊗ (JrT1 )− xT ⊗ (KATJ), λ(K ⊗ rT2 )− (xT ⊗ (λKCT + l)),KATJ, λKCT + l]×
vec(dA)

vec(dC)

db

dd

 ,
where

(K ⊗ JrT1 )− xT ⊗ (KATJ) = K(In ⊗ (Jr1)
T − xT ⊗ (ATJ)).

Thus, we have the desired result. �
Now, we define the normwise, mixed, and componentwise condition numbers for ILSQC

problem as follows:

κILSQC(A,C, b, d) := lim
ε→0

sup∥∥∥∥∥∥∥


 ∆A

∆C

,

 ∆b

∆d




∥∥∥∥∥∥∥
F

6ε

∥∆x∥2

∥∥∥∥∥
([

A

C

]
,

[
b

d

])∥∥∥∥∥
F

ε∥x∥2
, (4.3)

mILSQC(A,C, b, d) := lim
ε→0

sup
|∆A|6ε|A|,|∆C|6ε|C|
|∆b|6ε|b|,|∆d|6ε|d|

∥∆x∥∞
ε∥x∥∞

,
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cILSQC(A,C, b, d) := lim
ε→0

sup
|∆A|6ε|A|,|∆C|6ε|C|
|∆b|6ε|b|,|∆d|6ε|d|

1

ε

∥∥∥∥∆xx
∥∥∥∥
∞
,

where ∥ · ∥F is the product norm defined by (2.4),

∆x = ϕ(a+ δa, c+ δc, b+ δb, d+ δd)− ϕ(a, c, b, d), (4.4)

with δa = vec(∆A), δc = vec(∆C), δb = ∆b, and δd = ∆d. Using the mapping (4.1) and noting

that

∆x = dϕ(a, c, b, d).(δaT , δcT , δbT , δdT )T +O(ϵ2) = dϕ(a, c, b, d)


δa

δc

δb

δd

+O(ϵ2),

we have

κILSQC(A,C, b, d) = κ(ϕ; a, c, b, d), mILSQC(A,C, b, d) = m(ϕ; a, c, b, d),

cILSQC(A,C, b, d) = c(ϕ; a, c, b, d).

In the following theorem, we present the explicit asseverations for normwise, mixed and compo-

nentwise condition numbers for the solution x of ILSQC problem (1.1).

Theorem 4.2 For the solution of ILSQC problem (1.1)

x = (ATJA+ λCTC)−1(ATJb+ λCT d),

the normwise, mixed and componentwise condition number defined by (4.3) are

κILSQC(A,C, b, d) =

∥∥∥∥∥
([

A

C

]
,

[
b

d

])∥∥∥∥∥
F

∥xλ∥2
×∥∥∥∥∥Q(A,C)

[
− 1

β
∥x∥2KATJ − 1

β
∥x∥2(λKCT + l) 1

α
∥t∥2K

] [C1Im+p − C2
rrT

∥r∥22
β
α

rxT

∥x∥2∥r∥2

0 In

]∥∥∥∥∥
2

,

mILSQC(A,C, b, d)

=
∥|F (A,C, b, d)|vec(|A|) + |G(A,C, b, d)|vec(|C|) + |Q(A,C)KATJ ||b|+ |Q(A,C)(λKCT + l)||d|∥∞

∥x∥∞
,

cILSQC(A,C, b, d)

= ∥ |F (A,C, b, d)|vec(|A|) + |G(A,C, b, d)|vec(|C|) + |Q(A,C)KATJ ||b|+ |Q(A,C)(λKCT + l)||d|
|x| ∥∞,

where

r =

[
Jr1

λr2

]
, c1 =

√
β2

α2
+

1

∥x∥22
, c2 = c1 +

1

∥x∥2
.

Proof From Lemma 4.1 and Definition 2.2 for the normwise condition number κILSQC(A,C, b, d),
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we know that

κILSQC(A,C, b, d) = sup
dA̸=0,db̸=0
dC ̸=0,dd ̸=0

∥dϕ(A,C, b, d) · (dA,dC, db,dd)∥2∥∥∥∥∥
([

dA

dC

]
,

[
db

dd

])∥∥∥∥∥
F

·

∥∥∥∥∥
([

A

C

]
,

[
b

d

])∥∥∥∥∥
F

∥xλ∥2
.

Using Lemma 4.1 and some algebraic operations, we have

dϕ(a, c, b, d) · (dA,dC, db,dd)

= Q(A,C){K[dATJr1 +ATJ(db− dAx)] + λKdCT r2 − (λKCT + l)dCx+ (λKCT + l)dd)}

= Q(A,C)

−
[
KATJ λKCT + l

] [dA
dC

]
x+K

[
dA

dC

]T [
Jr1

λr2

]
+
[
KATJ λKCT + l

] [db
dd

]
From Lemma 2.5 and identifying

X = Q(A,C)
[
KATJ λKCT + l

]
, Y = Q(A,C)K,

V =

[
dA

dC

]
, u =

[
db

dc

]
, s = x, t =

[
Jr1

λr2

]
,

we conclude the following form

κILSQI(A,C, b, d) = sup
dA̸=0,db ̸=0
dC ̸=0,dd̸=0

∥dϕ(A,C, b, d) · (dA, dC, db,dd)∥2∥∥∥∥∥
([

dA

dC

]
,

[
db

dd

])∥∥∥∥∥
F

=

∥∥∥∥∥Q(A,C)
[
− 1

β
∥x∥2KATJ − 1

β
∥x∥2(λKCT + l) 1

α
∥t∥2K

] [C1Im+p − C2
rrT

∥r∥22
β
α

rxT

∥x∥2∥r∥2

0 In

]∥∥∥∥∥
2

,

then we have the explicit asseveration of κILSQC(A,C, b, d).
Combining Lemma 2.3 with Lemma 4.1, we have the mixed and componentwise condition

numbers
mILSQC(A,C, b, d)

=

∥∥∥∥∥∥∥∥∥∥
|dϕ(a, c, b, d)|


|a|
|c|
|b|
|d|


∥∥∥∥∥∥∥∥∥∥
∞

∥x∥∞

=

∥∥∥∥∥∥∥∥∥∥
|[F (A,C, b, d), G(A,C, b, d), Q(A,C)KATJ,Q(A,C)(λKCT + l)]|


|a|
|c|
|b|
|d|


∥∥∥∥∥∥∥∥∥∥
∞

∥x∥∞

= ∥ |F (A,C, b, d)|vec(|A|) + |G(A,C, b, d)|vec(|C|) + |Q(A,C)KATJ ||b|+ |Q(A,C)(λKCT + l)||d|
|x| ∥∞,
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and
cILSQC(A,C, b, d)

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

|dϕ(a, c, b, d)|


|a|
|c|
|b|
|d|


|x|

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

|[F (a, c, b, d), G(A,C, b, d), Q(A,C)KATJ,Q(A,C)(λKCT + l)]|


|a|
|c|
|b|
|d|


|x|

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

= ∥ |F (A,C, b, d)||vec(|A|)|+ |G(A,C, b, d)||vec(|C|)|+ |Q(A,C)KATJ ||b|+ |Q(A,C)(λKCT + l)||d|
|x| ∥∞.

The next corollary give the easier upper bounds for condition numbers mILSQC(A,C, b, d)
and cILSQC(A,C, b, d).

Corollary 4.3 Assume that the conditions of Theorem 4.2 hold. Then

mILSQC(A,C, b, d) ≤mILSQC
upp (A,C, b, d)

=∥|Q(A,C)K|(|AT ||Jr1|+ |ATJ ||A||x|) + |Q(A,C)(|λ||K||CT ||r2|+

|λKCT + l||C||x|)|+ |Q(A,C)KATJ ||b|+ |Q(A,C)(λKCT + l)||d|∥∞/∥x∥∞,

cILSQC(A,C, b, d) ≤cILSQC
upp (A,C, b, d)

=∥|Q(A,C)K|(|AT ||Jr1|+ |ATJ ||A||x|) + |Q(A,C)(|λ||K||CT ||r2|+

|λKCT + l||C||x|)|+ |Q(A,C)KATJ ||b|+ |Q(A,C)(λKCT + l)||d|/x∥∞.

Proof Applying Lemma 2.4 to mILSQC(A,C, b, d) and cILSQC(A,C, b, d) yields

mILSQC
upp (A,C, b, d) =∥[Q(A,C)[−xT ⊗ (KATJ) + (JrT1 ⊗K)Π]vec(dA) + [−(xT ⊗ (λKCT + l))+

λ(rT2 ⊗K)Π]vec(dC) +KATJdb+ (λKCT + l)dd)]∥∞/∥x∥∞,

≤∥|Q(A,C)K|(|AT ||Jr1|+ |ATJ ||A||x|) + |Q(A,C)(|λ||K||CT ||r2|+

|λKCT + l||C||x|)|+ |Q(A,C)KATJ ||b|+ |Q(A,C)(λKCT + l)||d|∥∞/∥x∥∞.

The proof of the upper bound for cILSQC
upp (A,C, b, d) is similar, so it is omitted. �

5. Condition numbers for residual of ILSQC problem
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In this section, we will derive the normwise, mixed and componentwise condition numbers

for the residual vector r of ILSQC problem. We first consider the explicit asseveration for the

Fréchet derivative of ψ defined at (a, c, b, d). Let ψ : Rmn × Rsn × Rm × Rs −→ Rm defined by

(a, c, b, d) → ψ(a, c, b, d) = r(a, c, b, d) = b−A(Q(A,C)(ATJb+ λCT d)), (5.1)

where (ATJA+ λCTC) is nonsingular and Q(A,C) = (ATJA+ λCTC)−1.

Now, we define the normwise, mixed, and componentwise condition numbers for residual of

ILSQC problem as follows:

κres(A,C, b, d) := lim
ε→0

sup∥∥∥∥∥∥∥


∆A
∆C

,

∆b
∆d




∥∥∥∥∥∥∥
F

6ε

∥∆r∥2

∥∥∥∥∥
([

A

C

]
,

[
b

d

])∥∥∥∥∥
F

ε∥r∥2
,

mres(A,C, b, d) := lim
ε→0

sup
|∆A|6ε|A|,|∆C|6ε|C|
|∆b|6ε|b|,|∆d|6ε|d|

∥∆r∥∞
ε∥r∥∞

, (5.2)

cres(A,C, b, d) := lim
ε→0

sup
|∆A|6ε|A|,|∆C|6ε|C|
|∆b|6ε|b|,|∆d|6ε|d|

1

ε
∥∆r
r

∥∞,

where ∥ · ∥F is the product norm defined by (2.4),

r +∆r = (b+∆b)− (A+∆A)(x+∆x),

and ψ is defined by (5.1), using the mapping, we have

κres(A,C, b, d) = κ(ψ; a, c, b, d), mres(A,C, b, d) = m(ψ; a, c, b, d), cres(A,C, b, d) = c(ψ; a, c, b, d).

In the following theorem, we prove the explicit asseveration for the Fréchet derivative of ψ

at (a, c, b, d).

Lemma 5.1 The function ψ is continuous on Rmn × Rsn × Rm × Rs. In addition ψ is Fréchet

differentiable at (a, c, b, d) and has the matrix expression

dψ(A,C, b, d) = [S(A,C, b, d), H(A,C, b, d),M,−N ],

where

S(A,C, b, d) = −xT ⊗M − (Jr1)
T ⊗ (AQ(A,C)K)Πmn,

H(A,C, b, d) = xT ⊗N − λ(rT2 ⊗ (AQ(A,C)K))Πpn,

M = (Im −AQ(A,C)KATJ), N = AQ(A,C)(λKCT + l).

Proof Differentiating both sides ψ(A,C, b, d) = b−Ax, we get

dψ(a, c, b, d) =d[b−Ax]

=db− dAx−A[Q(A,C){K[dATJr1 +ATJ(db− dAx)] + λKdCT r2−

(λKCT + l)dCx+ (λKCT + l)dd)}]
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=M(db− dAx)−AQ(A,C)K(dATJr1 + λdCT r2) +N(dCx− dd).

By applying the vec operator, we obtain

dψ =vec[M(db− dAx)−AQ(A,C)K(dATJr1 + λdCT r2) +N(dCx− dd)]

=[−xT ⊗M − (Jr1)
T ⊗ (AQ(A,C)K)Πmn]vec(dA) + [xT ⊗N − λ(rT2 ⊗ (AQ(A,C)K))Πpn

]
vec(dC)+

Mdb−Ndd

=
[
− xT ⊗M − (Jr1)

T ⊗ (AQ(A,C)K)Πmn, x
T ⊗N − λ(rT2 ⊗ (AQ(A,C)K))Πpn,M,−N ]


vecdA

vecdC

db

dd

 ,

Thus, dψ(A,C, b, d) = [S(A,C, b, d),H(A,C, b, d),M,−N ], we complete our desired result. �
Next, we will present the explicit expression of normwise, mixed and componentwise condition

numbers for residual of ILSQC problem. The proof of the following theorem is similar to the
proof of Theorem 4.2, thus it is omitted.

Theorem 5.2 Let A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp, then normwise, mixed and
componentwise condition numbers for residual vector r of ILSQC problem defined by (5.2), we
have

κres(A,C, b, d) =

∥∥∥∥∥Q(A,C)
[
1
β
∥x∥2(M −N) − 1

α
∥t∥2AQ(A,C)K

] [C1Im+p − C2
rrT

∥r∥22
β
α

rxT

∥x∥2∥r∥2

0 In

]∥∥∥∥∥
2

×

∥∥∥∥∥
([

A

C

]
,

[
b

d

])∥∥∥∥∥
F

∥r∥2

mres(A,C, b, d) =
∥|S(A,C, b, d)|vec(|A|) + |H(A,C, b, d)|vec(|C|) + |M ||b|+ |N ||d|∥∞

∥r∥∞
,

cres(A,C, b, d) =∥ |S(A,C, b, d)|vec(|A|) + |H(A,C, b, d)|vec(|B|) + |M ||b|+ |N ||d|
r

∥∞,

where r =

[
Jr1

λr2

]
, c1 =

√
β2

α2 + 1
∥x∥2

2
, c2 = c1 +

1
∥x∥2

.

Now, we want to give the upper bounds of residual vector r formres(A,C, b, d) and cres(A,C, b, d).
The proof is similar to the proof of Corollary 4.3, thus it is omitted.

Corollary 5.3 Assume that the condition of Theorem 5.2 holds. Then

mres(A,C, b, d) ≤mupper
res (A,B, b, d)

=∥|M ||A||x|+ |AQ(A,C)K||AT ||(Jr1)|+ |N ||C||x|+ |λ||AQ(A,C)K||CT ||r2|+
|M ||b|+ |N ||d|∥∞/∥r∥∞,

cres(A,C, b, d) ≤cupperres (A,B, b, d)

=∥|M ||A||x|+ |AQ(A,C)K||AT ||(Jr1)|+ |N ||C||x|+ |λ||AQ(A,C)K||CT ||r2|+
|M ||b|+ |N ||d|/r∥∞.

6. Numerical examples
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In this section, we examine the mixed and componentwise condition numbers and their upper

bounds that are given in Theorem 4.2 and Corollary 4.3 with the normwise condition number

KILSQC(A,B, b, d). Let

A =


5 + 10i 0 1

−1 3 1

1 0 8

0 1 0

 , C =

[
0 1 1

0 0 0

]
, J =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , b =

1

2

1

0

 , d =

[
1

1

]
,

and γ = 1.07. For i = 0 : 1 : 5, we have

rank

(
R

C

)
= rank

(
ATJA

C

)
= n = rank

(
RTR

C

)
= 3,

It is easy to check that the matrix ATJA (i = 0 : 1 : 5) is positive definite. The condition numbers

are computed based on their explicit asseveration in Theorem 4.2. Thus, upon computations in

MATLAB 7.9, with precision 2.22 × 10−16. From Table 1, we determine that: for each i, the

mixed mILSQC(A,C, b, d) and componentwise condition numbers cILSQC(A,C, b, d) and their

upper bounds are smaller than the normwise condition number KILSQC(A,C, b, d).

i mILSQC(A,C, b, d) cILSQC(A,C, b, d) mILSQC
upp (A,C, b, d) cILSQC

upp (A,C, b, d) KILSQC(A,C, b, d)

0 2.6550 7.0263 4.2371 15.3559 4.1486e+006

1 2.9494 6.3306 4.3822 12.4767 7.5849e+006

2 3.1419 5.9592 4.5400 11.4913 4.8963e+007

3 3.1724 5.9043 4.5675 11.3763 4.7286e+008

4 3.1757 5.8986 4.5705 11.3647 4.7137e+009

5 3.1760 5.8980 4.5708 11.3635 4.7122e+010

Table 1 Comparison of condition numbers in Therorm 4.2 and their upper bounds in Corollary 4.3

As the (1, 1)-element of A increases, then normwise condition number become larger and larg-

er, whereas comparatively the mixed and componentwise condition numbers have little change.

The main reason is that the mixed and componentwise condition numbers notice the structure

of the coefficient matrix A (i = 0 : 1 : 5) with respect to scaling, but the normwise condition

number ignores it.
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