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Abstract We study the central reflexive properties of rings with an involution. The concept

of central ∗-reflexive rings is introduced and investigated. It is shown that central ∗-reflexive
rings are a generalization of reflexive rings, central reflexive rings and ∗-reflexive rings. Some

characterizations of this class of rings are given. The related ring extensions including trivial

extension, Dorroh extension and polynomial extensions are also studied.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity. We denote by C(R) the

centre of R and the ring of integers is denoted by Z. Reversible rings were defined by Cohn [1]

in 1999. He showed that the Kothe conjecture is ture for the reversible rings. According to [2],

a ring R is reflexive if aRb = 0 implies bRa = 0 for all a, b ∈ R. It is clear that every reversible

ring is reflexive. An involution ∗ of a ring R is an anti-isomorphism such that (a+ b)∗ = a∗ + b∗,

(ab)∗ = b∗a∗ and (a∗)∗ = a for all a, b ∈ R. A ring R with the involution ∗ is called a ∗-ring. A
ring R is said to be a ∗-reflexive ring if for all a, b ∈ R, aRb = 0 implies bRa∗ = 0. According to

[3], a ring R is central reflexive if for any a, b ∈ R, whenever aRb = 0, then bRa ⊆ C(R).

This is a further study of reflexive rings [2–6] and ∗-reflexive rings [3, 5]. We introduce and

study the concept of central ∗-reflexive rings, which is a generalization of reflexive rings, central

reflexive rings and ∗-reflexive rings. A ring R is said to be a central ∗-reflexive ring if for all

a, b ∈ R, aRb = 0 implies bRa∗⊆ C(R). The connection among central ∗-reversible rings, central
∗-reflexive rings and central ∗-semicommutative rings are studied. Furthermore, we obtain the

related ring extensions including trivial extension, Dorroh extension and polynomial extensions.

2. Central ∗-reflexive rings

In this section, we define and study central ∗-reflexive rings. Some characterizations of this

class of rings are given, including four equivalent conditions and two sufficient conditions. Then
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we discuss the relations among central ∗-reversible rings, central ∗-reflexive rings and central

∗-semicommutative rings.

Definition 2.1 An involution ∗ of a ring R is said to be central reflexive, if for all a, b ∈ R,

aRb = 0 implies bRa∗⊆ C(R). A ring R with a central reflexive involution is said to be a central

∗-reflexive ring.

Proposition 2.2 For a ring R, the following statements are equivalent:

(1) R is a central ∗-reflexive;
(2) ARB = 0 implies BRA∗ ⊆ C(R) for any nonempty subsets A,B of R;

(3) IJ = 0 implies JI∗ ⊆ C(R) for all right(left) ideals I, J of R;

(4) IJ = 0 implies JI∗ ⊆ C(R) for all ideals I, J of R.

Proof (1)⇒(2). Let A,B be nonempty subsets of R such that ARB = 0. Then for any a ∈ A,

b ∈ B, aRb = 0. Since R is central ∗-reflexive, bRa∗ ⊆ C(R). Thus BRA∗ = Σa∈A,b∈BbRa∗ ⊆
C(R).

(2)⇒(3). Let I, J be two right ideals of R such that IJ = 0. Since IR = I, IRJ = 0. By

(2), JI∗ = JRI∗ ⊆ C(R). A similar proof can be given for all left ideals of R.

(3)⇒(4) is straightforward.

(4)⇒(1). Let aRb = 0 for a, b ∈ R. Then we have RaRRbR = 0, and so bRa∗ ⊆ RbRRa∗R ⊆
C(R) by (4). Thus R is central ∗-reflexive. �

Proposition 2.3 Let R and S be rings and τ : R → S be an isomorphism. Then

(1) ∗ is an involution on R if and only if τ(∗) := τ ◦ ∗ ◦ τ−1 is an involution on S.

(2) R is ∗-reflexive if and only if S is τ(∗)-reflexive.
(3) R is central ∗-reflexive if and only if S is central τ(∗)-reflexive.

Proof (1) First note that τ ◦ ∗ ◦ τ−1 := τ(∗) is an anti-automorphism on S of order two and

similarly τ−1 ◦ τ(∗) ◦ τ = ∗ is also an anti-automorphism on R of order two. It is easy to check

that if ∗ is an involution on R, then τ(∗) is an involution on S. Similarly, if τ(∗) is an involution

on S, then ∗ is an involution on R.

(2) Assume that R is ∗-reflexive. Then for any a, b ∈ S satisfying aSb = 0, we have

τ−1(aSb) = τ−1(a)Rτ−1(b) = 0. Thus τ−1(a)R(τ−1(b))∗ = 0. It follows that

0 = τ [τ−1(a)R(τ−1(b))∗] = aSτ [(τ−1(b))∗] = aSb∗.

Hence, S is τ(∗)-reflexive. The inverse is straightforward.

The proofs of (2) and (3) are analogous. �
An involution ∗ of R is said to be proper (resp., semiproper) if aa∗ = 0 (resp., aRa∗ = 0)

implies a = 0 for all a ∈ R.

Proposition 2.4 Let R be a ∗-ring. If the involution ∗ is semiproper, then R is central ∗-
reflexive.
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Proof Let R be a ring with a semiproper involution ∗. Then for any a, b, r ∈ R satisfying

aRb = 0, we have 0 = (ar∗b∗Rb)ra∗ = (bra∗)∗Rbra∗. It follows that bra∗ = 0 since ∗ is

semiproper. Thus bRa∗ = 0 and bRa∗ ⊆ C(R). Therefore, R is central ∗-reflexive. �
For a ∗-ring R, if an ideal I is closed under ∗ (i.e., I∗ = I), then I is a ∗-ring (possibly

without identity). It is clear that ∗ : R/I → R/I defined by (a + I)∗ = a∗ + I is an involution

of R/I.

Proposition 2.5 Let R be a ∗-ring and I be an ideal which is closed under ∗. If R/I is ∗-
reflexive and ∗ is a semiproper involution of I, then R is central ∗-reflexive.

Proof For any a, b ∈ R satisfying aRb = 0, we have bRa∗ ⊆ I since R/I is ∗-reflexive. And

aRb = 0 also implies (bra∗)∗R(bra∗) = (ar∗b∗Rb)ra∗ = 0 for any r ∈ R. Since bra∗ ∈ I and ∗ is

a semiproper involution of I, we have bra∗ = 0. Thus bRa∗ ⊆ C(R), as needed. �
A ring R is called semicommutative if for all a, b ∈ R, ab = 0 implies aRb = 0. It is clear

that a ring R is reversible if and only if R is semicommutative and reflexive.

Definition 2.6 A ∗-ring R is said to be central ∗-reversible if ab = 0 implies ba∗ ∈ C(R) for

all a, b ∈ R.

Definition 2.7 A ∗-ring R is said to be central ∗-semicommutative if ab = 0 implies bRa∗⊆ C(R)

for all a, b ∈ R.

Proposition 2.8 Every ∗-reversible is central ∗-reflexive.

Proof If R is a ∗-reversible ring, then R is symmetric by the proof of [2, Proposition 6]. For

any a, b ∈ R satisfying aRb = 0, we have ab = 0, and thus ba∗ = 0. Then we have bRa∗ = 0

since every symmetric ring is semicommutative. This shows that R is a ∗-reflexive ring. Thus R

is central ∗-reflexive. �
Recall that a ∗-ring R is said to be ∗-semicommutative if ab = 0 implies bRa∗ = 0 for all

a, b ∈ R. More generally, we give the following

Proposition 2.9 Every ∗-semicommutative ring is a central ∗-reflexive ring.

Proof Let R be a ∗-semicommutative ring and let a, b ∈ R such that aRb = 0. Then we have

ab = 0, and thus bRa∗ = 0. This implies that bRa∗ ⊆ C(R) and thus R is a central ∗-reflexive
ring. �

Corollary 2.10 Every ∗-semicommutative ring is a central ∗-semicommutative ring.

Proposition 2.11 Let R be a ∗-ring. Then
(1) If R is central ∗-reversible, then it is central ∗-reflexive.
(2) If R is central ∗-reflexive and semicommutative, then it is central ∗-reversible.

Proof (1) Let R be a central ∗-reversible ring. For any a, b ∈ R such that aRb = 0, we have

ab = 0. Then ba∗ ∈ C(R). Therefore, abr = 0 for all r ∈ R. By the central ∗-reversible property



122 Beilei GAO and Gaixia WANG

of R, bra∗ ∈ C(R). Hence, bRa∗ ⊆ C(R). Therefore, R is central ∗-reflexive.
(2) Let R be a central ∗-reflexive and semicommutative ring and let a, b ∈ R such that

ab = 0. Then we have aRb = 0 by the semicommutative property of R. And thus bRa∗ ⊆ C(R).

Then ba∗ ∈ C(R) since 1 ∈ R. �

Corollary 2.12 Every central ∗-semicommutative ring is a central ∗-reflexive ring.

Corollary 2.13 Let R be a semicommutative ring. If R is a central ∗-reflexive ring, then R is

central ∗-semicommutative.

The next example shows that a central ∗-reflexive ring need not be central ∗-semicommutative.

Example 2.14 Let R = (Mn(C),Mn(C)) and ∗: R → R defined by (A,B)∗ = (A∗, B∗) for

any A,B ∈ Mn(C), where ∗ is the conjugate transpose of matrices. Mn(C) is central ∗-reflexive,
then so is R. Now we show that R is not central ∗-semicommutative. Let

a =

((
0 1

0 0

)
,

(
0 1

0 0

))
∈ R.

Then we have a2 = 0. However,

aa∗ =

((
1 0

0 0

)
,

(
1 0

0 0

))
̸∈ C(R).

It follows that aRa∗ * C(R), proving R is not central ∗-semicommutative.

3. Extensions of central ∗-reflexive rings

An element a ∈ R is called self-adjoint if a = a∗. In particular, an idempotent e of a ∗-ring
R is called a projection if e∗ = e = e2.

Proposition 3.1 For a ∗-ring R, the following are equivalent:

(1) R is central ∗-reflexive;
(2) eRe is central ∗-reflexive for any projection e ∈ R;

(3) eR is central ∗-reflexive for any central idempotent e ∈ R.

Proof (1)⇒(2). Assume that R is a central ∗-reflexive ring and there is e2 = e = e∗ ∈ R. For

any eae, ebe ∈ eRe satisfying 0 = eae(eRe)ebe = eaeRebe, we have

ebeR(eae)∗ = ebeR(eaee)∗ = ebeeRe∗(eae)∗ = (ebe)(eRe)(eae)∗ ⊆ C(R).

Thus eRe is central ∗-reflexive.
(2)⇒(1). This is obvious if we let the projection e = 1.

(1)⇔(3) is straightforward by the above proof since every central idempotent is a projec-

tion. �
Recall that for a ring R and an (R,R)-bimodule M , the trivial extension of R by M is the

ring T (R,M) = R⊕M with the usual addition and the following multiplication:

(r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2).
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This is isomorphic to the ring of all matrices of the form
(
r m
0 r

)
, where r ∈ R, m ∈ M and the

usual matrix operations are used.

Note that if R is a ∗-ring and T (R,R) is the trivial extension of R, then ∗: T (R,R) → T (R,R)

defined by (
a b

0 a

)∗

=

(
a∗ b∗

0 a∗

)
is an involution on T (R,R).

Proposition 3.2 If the trivial extension T (R,R) is central ∗-reflexive, then R is central ∗-
reflexive.

Proof Suppose that R is a ∗-ring and T (R,R) is central ∗-reflexive. Let a, b ∈ R such that

aRb = 0. We have (
a 0

0 a

)
T (R,R)

(
0 b

0 0

)
= 0.

It follows that (
0 b

0 0

)
T (R,R)

(
a 0

0 a

)∗

=

(
0 bRa∗

0 0

)
∈ C(T (R,R))

since T (R,R) is central ∗-reflexive. Thus, we have bRa∗ ⊆ C(R). Hence R is central ∗-reflexive.�

Proposition 3.3 Let R be a reduced ring. If R is a central ∗-reflexive ring, then T (R,R) is

central ∗-reflexive ring.

Proof Let

A =

(
a b

0 a

)
, C =

(
c d

0 c

)
∈ T (R,R)

such that ABC = 0 for every B =
(
m n
0 m

)
∈ T (R,R). Then we have

amc = 0, (3.1)

amd+ amc+ bmc = 0. (3.2)

In the following, we freely use the fact that R is reduced and every reduced ring is semicom-

mutative. From Eq. (3.1), we see that amc = 0, and so abmc = amdc = 0. Multiplying Eq. (3.2)

on the right side by c, we have amdc+(an+ bm)c2 = (an+ bm)c2 = (an+ bm)c = 0. This shows

that

anc+ bmc = 0. (3.3)

Next multiplying Eq. (3.3) on the left side by a, we obtain a2nc + abmc = a2nc = 0 and so

anc = 0. Hence Eq. (3.2) becomes:

amd+ bmc = 0. (3.4)

Multiplying Eq. (3.4) on the left side by a, we obtain a2md+ abmc = a2md = 0. This shows

that amd = 0, and so bmc = 0. Now we obtain amc = amd = anc = bmc = 0. Since R is
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a central ∗-reflexive ring, we have cma∗ ∈ C(R), dma∗ ∈ C(R), cna∗ ∈ C(R), cmb∗ ∈ C(R).

Therefore, we get

CBA∗ =

(
cma∗ cmb∗ + cna∗ + dma∗

0 cma∗

)
∈ C(T (R,R)),

which implies that T (R,R) is central ∗-reflexive. �

Proposition 3.4 If {Ri : i ∈ I} is a class of central ∗-reflexive rings, then Πi∈IRi is central

∗-reflexive.

Proof Let Ri be central ∗-reflexive rings for all i ∈ I. Let S = Πi∈IRi and (ai), (bi) ∈ S such

that (ai)S(bi) = 0. This gives aiRibi = 0 for all i ∈ I. Since Ri is central ∗-reflexive for each

i ∈ I, biRia
∗
i ⊆ C(Ri) for all i ∈ I. Thus (bi)S(a

∗
i ) ⊆ C(R). This implies that S is central

∗-reflexive. �
Recall that an element u of a ring R is right regular if ur = 0 implies r = 0 for r ∈ R.

Left regular elements can be similarly defined. An element is regular if it is both left and right

regular. For a ∗-ring R, let △ be a multiplicative monoid in R consisting of central regular

elements. Then

△−1R = {u−1a | u ∈ △, a ∈ R}

is a ring. If △ is closed under ∗, then ∗: △−1R → △−1R defined by (u−1a)∗ = (u∗)−1a∗ is an

involution of △−1R.

Proposition 3.5 For a ∗-ring R, R is central ∗-reflexive if and only if△−1R is central ∗-reflexive.

Proof Let R be a central ∗-reflexive ring. Let u−1a, v−1b ∈ △−1R with u, v ∈ △ and a, b ∈ R

such that (u−1a) △−1 R(v−1b) = 0. Then we have aRb = 0. By assumption, bRa∗ ⊆ C(R).

Therefore, we have

(v−1b)△−1 R(u−1a)∗ = (v−1b)△−1 R(u∗)−1a∗ ⊆ C(△−1R),

and hence △−1R is central ∗-reflexive. Conversely, assume that △−1R is central ∗-reflexive. Let
a, b ∈ R such that aRb = 0. This implies that a(△−1R)b = 0. Since △−1R is central ∗-reflexive,
b(△−1R)a∗ = b(△−1R)a∗ ⊆ C(△−1R). Therefore, we get bRa∗ ⊆ C(R). This shows that R is

central ∗-reflexive. �
The ring of Laurent polynomials in x, over a ring R, consists of all formal sums

∑n
i=k rix

i

with usual addition and multiplication, where ri ∈ R and k, n ∈ Z. This ring is denoted

by R[x;x−1] [7]. Moreover, if R is a ring with involution ∗, then ∗ : R[x;x−1] → R[x;x−1]

defined by (
∑n

i=k aix
i)∗ =

∑n
i=k a

∗
i x

i extends ∗ and also is an involution of R[x;x−1]. Let

△ = {1, x, x2, . . .}. Then clearly △ is a multiplicative monoid in R[x] consisting of central

regular elements, and △ is closed under ∗ (in fact, x∗ = x). Then we have the following

Corollary 3.6 R[x] is central ∗-reflexive if and only if △−1R[x] is central ∗-reflexive.

Corollary 3.7 For a ring R, R[x] is central ∗-reflexive if and only if R[x;x−1] is central ∗-
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reflexive.

For an algebra R over a commutative ring S, the Dorroh extension of R by S is the Abelian

group D = R⊕ S with multiplication given by

(r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2),

where ri ∈ R and si ∈ R. If R is an algebra with involution ∗, then ∗ can induce an involution

∗:D → D defined by (r, s)∗ = (r∗, s).

Proposition 3.8 Let R be an algebra over a commutative ring S. Then R is central ∗-reflexive
if and only if the Dorroh extension D of R by S is central ∗-reflexive.

Proof Since every s ∈ S can be written as s = s · 1R, we have R = {r + s : (r, s) ∈ D}. Let R

be central ∗-reflexive and (r1, s1)D(r2, s2) = 0. Then (r1, s1)(r, s)(r2, s2) = 0 for any (r, s) ∈ D.

This implies

r1rr2 + s1rr2 + sr1r2 + s2r1r + s1sr2 + s1s2r + ss2r1 = 0 and s1ss2 = 0.

So (r1, s1)(r, s)(r2, s2) = 0 is equivalent to (r1 + s1)(r + s)(r2 + s2) = 0 with s1ss2 = 0. This

gives (r1 + s1)R(r2 + s2) = 0 with s2Ss1 = 0. Since R is central ∗-reflexive and S is com-

mutative, we have (r2, s2)R(r1, s1)
∗ = (r2, s2)R(r∗1 , s1) ⊆ C(R) with s2Ss1 = 0. This gives

(r2, s2)(r, s)(r
∗
1 , s1) = (r2, s2)(r, s)(r1, s1)

∗ ∈ C(D) and so, (r2, s2)D(r1, s1)
∗ ⊆ C(D). Hence D

is central ∗-reflexive.

Conversely, suppose D is central ∗-reflexive. Let a, b ∈ R such that aRb = 0. Then

(a, 0)D(b, 0) = (aRb + Sab, 0) = 0. By assumption, we have (b, 0)D(a, 0)∗ = (b, 0)D(a∗, 0) ⊆
C(D). It follows that (b, 0)(R, 0)(a∗, 0) = (bRa∗, 0) ∈ C(D). Therefore, bRa∗ ⊆ C(R), proving

that R is central ∗-reflexive. �

A ring R is an Armendariz ring if whenever the product of two polynomials in R[x] is

zero, each product of their coefficients is zero. Quasi-Armendariz rings are a generalization of

Armendariz rings defined in [8]. A ring R is quasi-Armendariz if whenever

f(x) =

n∑
i=0

aix
i, g(x) =

m∑
j=0

bjx
j

satisfy f(x)R[x]g(x) = 0, then aiRbj = 0 for all i, j.

Proposition 3.9 Let R be a quasi-Armendariz ring such that it is also central ∗-reflexive. Then
R[x] is central ∗-reflexive.

Proof Let f(x) =
∑n

i=0 aix
i, g(x) =

∑m
j=0 bjx

j ∈ R[x] such that f(x)R[x]g(x) = 0. Since R

is quasi-Armendariz, aiRbj = 0 for all i, j. Since R is central ∗-reflexive, bjRa∗i ⊆ C(R). Thus

g(x)R[x]f(x)∗ ⊆ C(R[x]) and hence R[x] is central ∗-reflexive. �
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