Journal of Mathematical Research with Applications Mar., 2020, Vol. 40, No. 2, pp. 119–126 DOI:10.3770/j.issn:2095-2651.2020.02.002 Http://jmre.dlut.edu.cn

Central Reflexive Rings with an Involution

Beilei GAO, Gaixia WANG*

School of Mathematics and Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract We study the central reflexive properties of rings with an involution. The concept of central *-reflexive rings is introduced and investigated. It is shown that central *-reflexive rings are a generalization of reflexive rings, central reflexive rings and *-reflexive rings. Some characterizations of this class of rings are given. The related ring extensions including trivial extension, Dorroh extension and polynomial extensions are also studied.

Keywords *-reflexive rings; central *-reflexive rings; central *-semicommutative ring; Dorroh extension

MR(2010) Subject Classification 16W10; 13B02

1. Introduction

Throughout this paper, R denotes an associative ring with identity. We denote by C(R) the centre of R and the ring of integers is denoted by \mathbb{Z} . Reversible rings were defined by Cohn [1] in 1999. He showed that the Kothe conjecture is ture for the reversible rings. According to [2], a ring R is reflexive if aRb = 0 implies bRa = 0 for all $a, b \in R$. It is clear that every reversible ring is reflexive. An involution * of a ring R is an anti-isomorphism such that $(a + b)^* = a^* + b^*$, $(ab)^* = b^*a^*$ and $(a^*)^* = a$ for all $a, b \in R$. A ring R with the involution * is called a *-ring. A ring R is said to be a *-reflexive ring if for all $a, b \in R$, aRb = 0 implies $bRa^* = 0$. According to [3], a ring R is central reflexive if for any $a, b \in R$, whenever aRb = 0, then $bRa \subseteq C(R)$.

This is a further study of reflexive rings [2–6] and *-reflexive rings [3,5]. We introduce and study the concept of central *-reflexive rings, which is a generalization of reflexive rings, central reflexive rings and *-reflexive rings. A ring R is said to be a central *-reflexive ring if for all $a, b \in R, aRb = 0$ implies $bRa^* \subseteq C(R)$. The connection among central *-reversible rings, central *-reflexive rings and central *-semicommutative rings are studied. Furthermore, we obtain the related ring extensions including trivial extension, Dorroh extension and polynomial extensions.

2. Central *-reflexive rings

In this section, we define and study central *-reflexive rings. Some characterizations of this class of rings are given, including four equivalent conditions and two sufficient conditions. Then

* Corresponding author

Received December 14, 2018; Accepted April 11, 2019

Supported by the National Natural Science Foundation of China (Grant No. 11601005).

E-mail address: wgx075@163.com (Gaixia WANG)

we discuss the relations among central *-reversible rings, central *-reflexive rings and central *-semicommutative rings.

Definition 2.1 An involution * of a ring R is said to be central reflexive, if for all $a, b \in R$, aRb = 0 implies $bRa^* \subseteq C(R)$. A ring R with a central reflexive involution is said to be a central *-reflexive ring.

Proposition 2.2 For a ring *R*, the following statements are equivalent:

- (1) R is a central *-reflexive;
- (2) ARB = 0 implies $BRA^* \subseteq C(R)$ for any nonempty subsets A, B of R;
- (3) IJ = 0 implies $JI^* \subseteq C(R)$ for all right(left) ideals I, J of R;
- (4) IJ = 0 implies $JI^* \subseteq C(R)$ for all ideals I, J of R.

Proof (1) \Rightarrow (2). Let A, B be nonempty subsets of R such that ARB = 0. Then for any $a \in A$, $b \in B$, aRb = 0. Since R is central *-reflexive, $bRa^* \subseteq C(R)$. Thus $BRA^* = \sum_{a \in A, b \in B} bRa^* \subseteq C(R)$.

(2) \Rightarrow (3). Let I, J be two right ideals of R such that IJ = 0. Since IR = I, IRJ = 0. By (2), $JI^* = JRI^* \subseteq C(R)$. A similar proof can be given for all left ideals of R.

 $(3) \Rightarrow (4)$ is straightforward.

 $(4) \Rightarrow (1)$. Let aRb = 0 for $a, b \in R$. Then we have RaRbR = 0, and so $bRa^* \subseteq RbRRa^*R \subseteq C(R)$ by (4). Thus R is central *-reflexive. \Box

Proposition 2.3 Let R and S be rings and $\tau : R \to S$ be an isomorphism. Then

- (1) * is an involution on R if and only if $\tau(*) := \tau \circ * \circ \tau^{-1}$ is an involution on S.
- (2) R is *-reflexive if and only if S is $\tau(*)$ -reflexive.
- (3) R is central *-reflexive if and only if S is central $\tau(*)$ -reflexive.

Proof (1) First note that $\tau \circ * \circ \tau^{-1} := \tau(*)$ is an anti-automorphism on S of order two and similarly $\tau^{-1} \circ \tau(*) \circ \tau = *$ is also an anti-automorphism on R of order two. It is easy to check that if * is an involution on R, then $\tau(*)$ is an involution on S. Similarly, if $\tau(*)$ is an involution on S, then * is an involution on R.

(2) Assume that R is *-reflexive. Then for any $a, b \in S$ satisfying aSb = 0, we have $\tau^{-1}(aSb) = \tau^{-1}(a)R\tau^{-1}(b) = 0$. Thus $\tau^{-1}(a)R(\tau^{-1}(b))^* = 0$. It follows that

$$0 = \tau[\tau^{-1}(a)R(\tau^{-1}(b))^*] = aS\tau[(\tau^{-1}(b))^*] = aSb^*.$$

Hence, S is $\tau(*)$ -reflexive. The inverse is straightforward.

The proofs of (2) and (3) are analogous. \Box

An involution * of R is said to be proper (resp., semiproper) if $aa^* = 0$ (resp., $aRa^* = 0$) implies a = 0 for all $a \in R$.

Proposition 2.4 Let R be a *-ring. If the involution * is semiproper, then R is central *-reflexive.

Proof Let R be a ring with a semiproper involution *. Then for any $a, b, r \in R$ satisfying aRb = 0, we have $0 = (ar^*b^*Rb)ra^* = (bra^*)^*Rbra^*$. It follows that $bra^* = 0$ since * is semiproper. Thus $bRa^* = 0$ and $bRa^* \subseteq C(R)$. Therefore, R is central *-reflexive. \Box

For a *-ring R, if an ideal I is closed under * (i.e., $I^* = I$), then I is a *-ring (possibly without identity). It is clear that $\overline{*} : R/I \to R/I$ defined by $(a+I)^{\overline{*}} = a^* + I$ is an involution of R/I.

Proposition 2.5 Let R be a *-ring and I be an ideal which is closed under *. If R/I is $\overline{*}$ -reflexive and * is a semiproper involution of I, then R is central *-reflexive.

Proof For any $a, b \in R$ satisfying aRb = 0, we have $bRa^* \subseteq I$ since R/I is $\overline{*}$ -reflexive. And aRb = 0 also implies $(bra^*)^*R(bra^*) = (ar^*b^*Rb)ra^* = 0$ for any $r \in R$. Since $bra^* \in I$ and * is a semiproper involution of I, we have $bra^* = 0$. Thus $bRa^* \subseteq C(R)$, as needed. \Box

A ring R is called semicommutative if for all $a, b \in R$, ab = 0 implies aRb = 0. It is clear that a ring R is reversible if and only if R is semicommutative and reflexive.

Definition 2.6 A *-ring R is said to be central *-reversible if ab = 0 implies $ba^* \in C(R)$ for all $a, b \in R$.

Definition 2.7 A *-ring R is said to be central *-semicommutative if ab = 0 implies $bRa^* \subseteq C(R)$ for all $a, b \in R$.

Proposition 2.8 Every *-reversible is central *-reflexive.

Proof If R is a *-reversible ring, then R is symmetric by the proof of [2, Proposition 6]. For any $a, b \in R$ satisfying aRb = 0, we have ab = 0, and thus $ba^* = 0$. Then we have $bRa^* = 0$ since every symmetric ring is semicommutative. This shows that R is a *-reflexive ring. Thus R is central *-reflexive. \Box

Recall that a *-ring R is said to be *-semicommutative if ab = 0 implies $bRa^* = 0$ for all $a, b \in R$. More generally, we give the following

Proposition 2.9 Every *-semicommutative ring is a central *-reflexive ring.

Proof Let R be a *-semicommutative ring and let $a, b \in R$ such that aRb = 0. Then we have ab = 0, and thus $bRa^* = 0$. This implies that $bRa^* \subseteq C(R)$ and thus R is a central *-reflexive ring. \Box

Corollary 2.10 Every *-semicommutative ring is a central *-semicommutative ring.

Proposition 2.11 Let R be a *-ring. Then

- (1) If R is central *-reversible, then it is central *-reflexive.
- (2) If R is central *-reflexive and semicommutative, then it is central *-reversible.

Proof (1) Let R be a central *-reversible ring. For any $a, b \in R$ such that aRb = 0, we have ab = 0. Then $ba^* \in C(R)$. Therefore, abr = 0 for all $r \in R$. By the central *-reversible property

of R, $bra^* \in C(R)$. Hence, $bRa^* \subseteq C(R)$. Therefore, R is central *-reflexive.

(2) Let R be a central *-reflexive and semicommutative ring and let $a, b \in R$ such that ab = 0. Then we have aRb = 0 by the semicommutative property of R. And thus $bRa^* \subseteq C(R)$. Then $ba^* \in C(R)$ since $1 \in R$. \Box

Corollary 2.12 Every central *-semicommutative ring is a central *-reflexive ring.

Corollary 2.13 Let R be a semicommutative ring. If R is a central *-reflexive ring, then R is central *-semicommutative.

The next example shows that a central *-reflexive ring need not be central *-semicommutative.

Example 2.14 Let $R = (M_n(\mathbb{C}), M_n(\mathbb{C}))$ and $\overline{*}: R \to R$ defined by $(A, B)^{\overline{*}} = (A^*, B^*)$ for any $A, B \in M_n(\mathbb{C})$, where * is the conjugate transpose of matrices. $M_n(\mathbb{C})$ is central *-reflexive, then so is R. Now we show that R is not central *-semicommutative. Let

$$a = \left(\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right)
ight) \in R.$$

Then we have $a^2 = 0$. However,

$$aa^{\overline{*}} = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \right) \notin C(R).$$

It follows that $aRa^{\overline{*}} \not\subseteq C(R)$, proving R is not central *-semicommutative.

3. Extensions of central *-reflexive rings

An element $a \in R$ is called self-adjoint if $a = a^*$. In particular, an idempotent e of a *-ring R is called a projection if $e^* = e = e^2$.

Proposition 3.1 For a *-ring R, the following are equivalent:

- (1) R is central *-reflexive;
- (2) eRe is central *-reflexive for any projection $e \in R$;
- (3) eR is central *-reflexive for any central idempotent $e \in R$.

Proof (1) \Rightarrow (2). Assume that *R* is a central *-reflexive ring and there is $e^2 = e = e^* \in R$. For any $eae, ebe \in eRe$ satisfying 0 = eae(eRe)ebe = eaeRebe, we have

$$ebeR(eae)^* = ebeR(eaee)^* = ebeeRe^*(eae)^* = (ebe)(eRe)(eae)^* \subseteq C(R).$$

Thus eRe is central *-reflexive.

 $(2) \Rightarrow (1)$. This is obvious if we let the projection e = 1.

(1) ⇔(3) is straightforward by the above proof since every central idempotent is a projection. \square

Recall that for a ring R and an (R,R)-bimodule M, the trivial extension of R by M is the ring $T(R,M) = R \oplus M$ with the usual addition and the following multiplication:

$$(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2).$$

This is isomorphic to the ring of all matrices of the form $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$, where $r \in R$, $m \in M$ and the usual matrix operations are used.

Note that if R is a *-ring and T(R,R) is the trivial extension of R, then $\overline{*}$: $T(R,R) \to T(R,R)$ defined by

$$\left(\begin{array}{cc}a&b\\0&a\end{array}\right)^* = \left(\begin{array}{cc}a^*&b^*\\0&a^*\end{array}\right)$$

is an involution on T(R, R).

Proposition 3.2 If the trivial extension T(R, R) is central $\overline{*}$ -reflexive, then R is central *-reflexive.

Proof Suppose that R is a *-ring and T(R, R) is central $\overline{*}$ -reflexive. Let $a, b \in R$ such that aRb = 0. We have

$$\left(\begin{array}{cc}a&0\\0&a\end{array}\right)T(R,R)\left(\begin{array}{cc}0&b\\0&0\end{array}\right)=0.$$

It follows that

$$\left(\begin{array}{cc} 0 & b \\ 0 & 0 \end{array}\right) T(R,R) \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right)^* = \left(\begin{array}{cc} 0 & bRa^* \\ 0 & 0 \end{array}\right) \in C(T(R,R))$$

since T(R, R) is central $\overline{*}$ -reflexive. Thus, we have $bRa^* \subseteq C(R)$. Hence R is central *-reflexive. \Box

Proposition 3.3 Let R be a reduced ring. If R is a central *-reflexive ring, then T(R, R) is central $\overline{*}$ -reflexive ring.

Proof Let

$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, \quad C = \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} \in T(R, R)$$

such that ABC = 0 for every $B = \begin{pmatrix} m & n \\ 0 & m \end{pmatrix} \in T(R, R)$. Then we have

$$amc = 0, \tag{3.1}$$

$$amd + amc + bmc = 0. \tag{3.2}$$

In the following, we freely use the fact that R is reduced and every reduced ring is semicommutative. From Eq. (3.1), we see that amc = 0, and so abmc = amdc = 0. Multiplying Eq. (3.2) on the right by c, we have $amdc + (an + bm)c^2 = (an + bm)c^2 = (an + bm)c = 0$. This shows that

$$anc + bmc = 0. \tag{3.3}$$

Next multiplying Eq. (3.3) on the left side by a, we obtain $a^2nc + abmc = a^2nc = 0$ and so anc = 0. Hence Eq. (3.2) becomes:

$$amd + bmc = 0. \tag{3.4}$$

Multiplying Eq. (3.4) on the left side by a, we obtain $a^2md + abmc = a^2md = 0$. This shows that amd = 0, and so bmc = 0. Now we obtain amc = amd = anc = bmc = 0. Since R is

a central *-reflexive ring, we have $cma^* \in C(R)$, $dma^* \in C(R)$, $cna^* \in C(R)$, $cmb^* \in C(R)$. Therefore, we get

$$CBA^{\overline{*}} = \left(\begin{array}{cc} cma^{*} & cmb^{*} + cna^{*} + dma^{*} \\ 0 & cma^{*} \end{array} \right) \in C(T(R,R)),$$

which implies that T(R,R) is central $\overline{*}$ -reflexive. \Box

Proposition 3.4 If $\{R_i : i \in I\}$ is a class of central *-reflexive rings, then $\prod_{i \in I} R_i$ is central *-reflexive.

Proof Let R_i be central *-reflexive rings for all $i \in I$. Let $S = \prod_{i \in I} R_i$ and $(a_i), (b_i) \in S$ such that $(a_i)S(b_i) = 0$. This gives $a_iR_ib_i = 0$ for all $i \in I$. Since R_i is central *-reflexive for each $i \in I$, $b_iR_ia_i^* \subseteq C(R_i)$ for all $i \in I$. Thus $(b_i)S(a_i^*) \subseteq C(R)$. This implies that S is central *-reflexive. \Box

Recall that an element u of a ring R is right regular if ur = 0 implies r = 0 for $r \in R$. Left regular elements can be similarly defined. An element is regular if it is both left and right regular. For a *-ring R, let \triangle be a multiplicative monoid in R consisting of central regular elements. Then

$$\triangle^{-1}R = \{ u^{-1}a \mid u \in \triangle, a \in R \}$$

is a ring. If \triangle is closed under *, then $\overline{*}: \triangle^{-1}R \rightarrow \triangle^{-1}R$ defined by $(u^{-1}a)^{\overline{*}} = (u^*)^{-1}a^*$ is an involution of $\triangle^{-1}R$.

Proposition 3.5 For a *-ring R, R is central *-reflexive if and only if $\triangle^{-1}R$ is central $\overline{*}$ -reflexive.

Proof Let R be a central *-reflexive ring. Let $u^{-1}a, v^{-1}b \in \triangle^{-1}R$ with $u, v \in \triangle$ and $a, b \in R$ such that $(u^{-1}a) \triangle^{-1} R(v^{-1}b) = 0$. Then we have aRb = 0. By assumption, $bRa^* \subseteq C(R)$. Therefore, we have

$$(v^{-1}b) \bigtriangleup^{-1} R(u^{-1}a)^{\overline{*}} = (v^{-1}b) \bigtriangleup^{-1} R(u^*)^{-1}a^* \subseteq C(\bigtriangleup^{-1}R),$$

and hence $\triangle^{-1}R$ is central $\overline{\ast}$ -reflexive. Conversely, assume that $\triangle^{-1}R$ is central $\overline{\ast}$ -reflexive. Let $a, b \in R$ such that aRb = 0. This implies that $a(\triangle^{-1}R)b = 0$. Since $\triangle^{-1}R$ is central $\overline{\ast}$ -reflexive, $b(\triangle^{-1}R)a^{\overline{\ast}} = b(\triangle^{-1}R)a^* \subseteq C(\triangle^{-1}R)$. Therefore, we get $bRa^* \subseteq C(R)$. This shows that R is central \ast -reflexive. \Box

The ring of Laurent polynomials in x, over a ring R, consists of all formal sums $\sum_{i=k}^{n} r_i x^i$ with usual addition and multiplication, where $r_i \in R$ and $k, n \in \mathbb{Z}$. This ring is denoted by $R[x; x^{-1}]$ [7]. Moreover, if R is a ring with involution *, then $\overline{*} : R[x; x^{-1}] \to R[x; x^{-1}]$ defined by $(\sum_{i=k}^{n} a_i x^i)^{\overline{*}} = \sum_{i=k}^{n} a_i^* x^i$ extends * and also is an involution of $R[x; x^{-1}]$. Let $\Delta = \{1, x, x^2, \ldots\}$. Then clearly Δ is a multiplicative monoid in R[x] consisting of central regular elements, and Δ is closed under $\overline{*}$ (in fact, $x^{\overline{*}} = x$). Then we have the following

Corollary 3.6 R[x] is central $\overline{*}$ -reflexive if and only if $\triangle^{-1}R[x]$ is central $\overline{*}$ -reflexive.

Corollary 3.7 For a ring R, R[x] is central $\overline{*}$ -reflexive if and only if $R[x; x^{-1}]$ is central $\overline{*}$ -

reflexive.

For an algebra R over a commutative ring S, the Dorroh extension of R by S is the Abelian group $D = R \oplus S$ with multiplication given by

$$(r_1, s_1)(r_2, s_2) = (r_1r_2 + s_1r_2 + s_2r_1, s_1s_2),$$

where $r_i \in R$ and $s_i \in R$. If R is an algebra with involution *, then * can induce an involution $\overline{*}: D \to D$ defined by $(r, s)^{\overline{*}} = (r^*, s)$.

Proposition 3.8 Let R be an algebra over a commutative ring S. Then R is central *-reflexive if and only if the Dorroh extension D of R by S is central $\overline{*}$ -reflexive.

Proof Since every $s \in S$ can be written as $s = s \cdot 1_R$, we have $R = \{r + s : (r, s) \in D\}$. Let R be central *-reflexive and $(r_1, s_1)D(r_2, s_2) = 0$. Then $(r_1, s_1)(r, s)(r_2, s_2) = 0$ for any $(r, s) \in D$. This implies

$$r_1rr_2 + s_1rr_2 + sr_1r_2 + s_2r_1r + s_1sr_2 + s_1s_2r + ss_2r_1 = 0$$
 and $s_1ss_2 = 0$.

So $(r_1, s_1)(r, s)(r_2, s_2) = 0$ is equivalent to $(r_1 + s_1)(r + s)(r_2 + s_2) = 0$ with $s_1ss_2 = 0$. This gives $(r_1 + s_1)R(r_2 + s_2) = 0$ with $s_2Ss_1 = 0$. Since R is central *-reflexive and S is commutative, we have $(r_2, s_2)R(r_1, s_1)^* = (r_2, s_2)R(r_1^*, s_1) \subseteq C(R)$ with $s_2Ss_1 = 0$. This gives $(r_2, s_2)(r, s)(r_1^*, s_1) = (r_2, s_2)(r, s)(r_1, s_1)^* \in C(D)$ and so, $(r_2, s_2)D(r_1, s_1)^* \subseteq C(D)$. Hence D is central *-reflexive.

Conversely, suppose D is central $\overline{*}$ -reflexive. Let $a, b \in R$ such that aRb = 0. Then (a, 0)D(b, 0) = (aRb + Sab, 0) = 0. By assumption, we have $(b, 0)D(a, 0)^{\overline{*}} = (b, 0)D(a^*, 0) \subseteq C(D)$. It follows that $(b, 0)(R, 0)(a^*, 0) = (bRa^*, 0) \in C(D)$. Therefore, $bRa^* \subseteq C(R)$, proving that R is central *-reflexive. \Box

A ring R is an Armendariz ring if whenever the product of two polynomials in R[x] is zero, each product of their coefficients is zero. Quasi-Armendariz rings are a generalization of Armendariz rings defined in [8]. A ring R is quasi-Armendariz if whenever

$$f(x) = \sum_{i=0}^{n} a_i x^i, \quad g(x) = \sum_{j=0}^{m} b_j x^j$$

satisfy f(x)R[x]g(x) = 0, then $a_iRb_j = 0$ for all i, j.

Proposition 3.9 Let R be a quasi-Armendariz ring such that it is also central *-reflexive. Then R[x] is central $\overline{*}$ -reflexive.

Proof Let $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{j=0}^{m} b_j x^j \in R[x]$ such that f(x)R[x]g(x) = 0. Since R is quasi-Armendariz, $a_iRb_j = 0$ for all i, j. Since R is central *-reflexive, $b_jRa_i^* \subseteq C(R)$. Thus $g(x)R[x]f(x)^{\overline{*}} \subseteq C(R[x])$ and hence R[x] is central $\overline{*}$ -reflexive. \Box

Acknowledgements We thank the referees for their time and comments.

References

- [1] P. M. COHN. Reversible rings. Bull. London Math. Soc., 1999, 31: 641-648.
- [2] G. MASON. Reflexive ideals. Comm. Algebra, 1981, 9(17): 1709–1724.
- [3] U. S. CHAKRABORTY. On some classes of reflexive rings. Asian-Eur. J. Math., 2015, 8: 1–15.
- W. M. FAKIEH, S. K. NAUMAN. Reversible rings with involutions and some minimalities. The Scientific World Journal, 2013, 6: 650702.
- [5] Liang ZHAO, Xiaosheng ZHU, Qinqin GU. Reflexive rings and their extensions. Math. Slovaca, 2013, 63(3): 417–430.
- [6] T. K. KWAK, Y. LEE. Reflexive property of rings. Comm. Algebra, 2012, 40(4): 1576–1594.
- [7] Y. HIRANO. On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra, 2002, 168: 45–52.
- [8] N. K. KIM, Y. LEE. Armendariz rings and reduced Rings. J. Algebra, 2000, 223: 477–488.