Central Reflexive Rings with an Involution

Beilei GAO, Gaixia WANG*
School of Mathematics and Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract

We study the central reflexive properties of rings with an involution. The concept of central *-reflexive rings is introduced and investigated. It is shown that central *-reflexive rings are a generalization of reflexive rings, central reflexive rings and $*$-reflexive rings. Some characterizations of this class of rings are given. The related ring extensions including trivial extension, Dorroh extension and polynomial extensions are also studied.

Keywords *-reflexive rings; central *-reflexive rings; central *-semicommutative ring; Dorroh extension

MR(2010) Subject Classification 16W10; 13B02

1. Introduction

Throughout this paper, R denotes an associative ring with identity. We denote by $C(R)$ the centre of R and the ring of integers is denoted by \mathbb{Z}. Reversible rings were defined by Cohn [1] in 1999. He showed that the Kothe conjecture is ture for the reversible rings. According to [2], a ring R is reflexive if $a R b=0$ implies $b R a=0$ for all $a, b \in R$. It is clear that every reversible ring is reflexive. An involution $*$ of a ring R is an anti-isomorphism such that $(a+b)^{*}=a^{*}+b^{*}$, $(a b)^{*}=b^{*} a^{*}$ and $\left(a^{*}\right)^{*}=a$ for all $a, b \in R$. A ring R with the involution $*$ is called a $*$-ring. A ring R is said to be a $*$-reflexive ring if for all $a, b \in R, a R b=0$ implies $b R a^{*}=0$. According to [3], a ring R is central reflexive if for any $a, b \in R$, whenever $a R b=0$, then $b R a \subseteq C(R)$.

This is a further study of reflexive rings [2-6] and *-reflexive rings [3,5]. We introduce and study the concept of central $*$-reflexive rings, which is a generalization of reflexive rings, central reflexive rings and $*$-reflexive rings. A ring R is said to be a central $*$-reflexive ring if for all $a, b \in R, a R b=0$ implies $b R a^{*} \subseteq C(R)$. The connection among central $*$-reversible rings, central *-reflexive rings and central $*$-semicommutative rings are studied. Furthermore, we obtain the related ring extensions including trivial extension, Dorroh extension and polynomial extensions.

2. Central *-reflexive rings

In this section, we define and study central $*$-reflexive rings. Some characterizations of this class of rings are given, including four equivalent conditions and two sufficient conditions. Then

Received December 14, 2018; Accepted April 11, 2019
Supported by the National Natural Science Foundation of China (Grant No. 11601005).

* Corresponding author

E-mail address: wgx075@163.com (Gaixia WANG)
we discuss the relations among central $*$-reversible rings, central $*$-reflexive rings and central *-semicommutative rings.

Definition 2.1 An involution $*$ of a ring R is said to be central reflexive, if for all $a, b \in R$, $a R b=0$ implies $b R a^{*} \subseteq C(R)$. A ring R with a central reflexive involution is said to be a central *-reflexive ring.

Proposition 2.2 For a ring R, the following statements are equivalent:
(1) R is a central $*$-reflexive;
(2) $A R B=0$ implies $B R A^{*} \subseteq C(R)$ for any nonempty subsets A, B of R;
(3) $I J=0$ implies $J I^{*} \subseteq C(R)$ for all right(left) ideals I, J of R;
(4) $I J=0$ implies $J I^{*} \subseteq C(R)$ for all ideals I, J of R.

Proof $(1) \Rightarrow(2)$. Let A, B be nonempty subsets of R such that $A R B=0$. Then for any $a \in A$, $b \in B, a R b=0$. Since R is central $*$-reflexive, $b R a^{*} \subseteq C(R)$. Thus $B R A^{*}=\Sigma_{a \in A, b \in B} b R a^{*} \subseteq$ $C(R)$.
$(2) \Rightarrow(3)$. Let I, J be two right ideals of R such that $I J=0$. Since $I R=I, I R J=0$. By (2), $J I^{*}=J R I^{*} \subseteq C(R)$. A similar proof can be given for all left ideals of R.
$(3) \Rightarrow(4)$ is straightforward.
$(4) \Rightarrow(1)$. Let $a R b=0$ for $a, b \in R$. Then we have $R a R R b R=0$, and so $b R a^{*} \subseteq R b R R a^{*} R \subseteq$ $C(R)$ by (4). Thus R is central $*$-reflexive.

Proposition 2.3 Let R and S be rings and $\tau: R \rightarrow S$ be an isomorphism. Then
(1) $*$ is an involution on R if and only if $\tau(*):=\tau \circ * \circ \tau^{-1}$ is an involution on S.
(2) R is $*$-reflexive if and only if S is $\tau(*)$-reflexive.
(3) R is central *-reflexive if and only if S is central $\tau(*)$-reflexive.

Proof (1) First note that $\tau \circ * \circ \tau^{-1}:=\tau(*)$ is an anti-automorphism on S of order two and similarly $\tau^{-1} \circ \tau(*) \circ \tau=*$ is also an anti-automorphism on R of order two. It is easy to check that if $*$ is an involution on R, then $\tau(*)$ is an involution on S. Similarly, if $\tau(*)$ is an involution on S, then $*$ is an involution on R.
(2) Assume that R is *-reflexive. Then for any $a, b \in S$ satisfying $a S b=0$, we have $\tau^{-1}(a S b)=\tau^{-1}(a) R \tau^{-1}(b)=0$. Thus $\tau^{-1}(a) R\left(\tau^{-1}(b)\right)^{*}=0$. It follows that

$$
0=\tau\left[\tau^{-1}(a) R\left(\tau^{-1}(b)\right)^{*}\right]=a S \tau\left[\left(\tau^{-1}(b)\right)^{*}\right]=a S b^{*}
$$

Hence, S is $\tau(*)$-reflexive. The inverse is straightforward.
The proofs of (2) and (3) are analogous.
An involution $*$ of R is said to be proper (resp., semiproper) if $a a^{*}=0$ (resp., $a R a^{*}=0$) implies $a=0$ for all $a \in R$.

Proposition 2.4 Let R be a *-ring. If the involution $*$ is semiproper, then R is central *reflexive.

Proof Let R be a ring with a semiproper involution $*$. Then for any $a, b, r \in R$ satisfying $a R b=0$, we have $0=\left(a r^{*} b^{*} R b\right) r a^{*}=\left(b r a^{*}\right)^{*} R b r a^{*}$. It follows that bra* $=0$ since $*$ is semiproper. Thus $b R a^{*}=0$ and $b R a^{*} \subseteq C(R)$. Therefore, R is central $*$-reflexive.

For a $*$-ring R, if an ideal I is closed under $*$ (i.e., $I^{*}=I$), then I is a $*$-ring (possibly without identity). It is clear that $\bar{*}: R / I \rightarrow R / I$ defined by $(a+I)^{\bar{*}}=a^{*}+I$ is an involution of R / I.

Proposition 2.5 Let R be a *-ring and I be an ideal which is closed under $*$. If R / I is $\bar{*}$ reflexive and $*$ is a semiproper involution of I, then R is central $*$-reflexive.

Proof For any $a, b \in R$ satisfying $a R b=0$, we have $b R a^{*} \subseteq I$ since R / I is $\bar{*}$-reflexive. And $a R b=0$ also implies $\left(b r a^{*}\right)^{*} R\left(b r a^{*}\right)=\left(a r^{*} b^{*} R b\right) r a^{*}=0$ for any $r \in R$. Since $b r a^{*} \in I$ and $*$ is a semiproper involution of I, we have $b r a^{*}=0$. Thus $b R a^{*} \subseteq C(R)$, as needed.

A ring R is called semicommutative if for all $a, b \in R, a b=0$ implies $a R b=0$. It is clear that a ring R is reversible if and only if R is semicommutative and reflexive.

Definition 2.6 $A *$-ring R is said to be central $*$-reversible if $a b=0$ implies $b a^{*} \in C(R)$ for all $a, b \in R$.

Definition 2.7 $A *$-ring R is said to be central $*$-semicommutative if $a b=0$ implies $b R a^{*} \subseteq C(R)$ for all $a, b \in R$.

Proposition 2.8 Every *-reversible is central *-reflexive.
Proof If R is a *-reversible ring, then R is symmetric by the proof of [2, Proposition 6]. For any $a, b \in R$ satisfying $a R b=0$, we have $a b=0$, and thus $b a^{*}=0$. Then we have $b R a^{*}=0$ since every symmetric ring is semicommutative. This shows that R is a $*$-reflexive ring. Thus R is central $*$-reflexive.

Recall that a $*$-ring R is said to be $*$-semicommutative if $a b=0$ implies $b R a^{*}=0$ for all $a, b \in R$. More generally, we give the following

Proposition 2.9 Every $*$-semicommutative ring is a central $*$-reflexive ring.
Proof Let R be a $*$-semicommutative ring and let $a, b \in R$ such that $a R b=0$. Then we have $a b=0$, and thus $b R a^{*}=0$. This implies that $b R a^{*} \subseteq C(R)$ and thus R is a central $*$-reflexive ring.

Corollary 2.10 Every *-semicommutative ring is a central *-semicommutative ring.
Proposition 2.11 Let R be a *-ring. Then
(1) If R is central $*$-reversible, then it is central $*$-reflexive.
(2) If R is central $*$-reflexive and semicommutative, then it is central $*$-reversible.

Proof (1) Let R be a central $*$-reversible ring. For any $a, b \in R$ such that $a R b=0$, we have $a b=0$. Then $b a^{*} \in C(R)$. Therefore, $a b r=0$ for all $r \in R$. By the central $*$-reversible property
of $R, b r a^{*} \in C(R)$. Hence, $b R a^{*} \subseteq C(R)$. Therefore, R is central $*$-reflexive.
(2) Let R be a central *-reflexive and semicommutative ring and let $a, b \in R$ such that $a b=0$. Then we have $a R b=0$ by the semicommutative property of R. And thus $b R a^{*} \subseteq C(R)$. Then $b a^{*} \in C(R)$ since $1 \in R$.

Corollary 2.12 Every central $*$-semicommutative ring is a central $*$-reflexive ring.
Corollary 2.13 Let R be a semicommutative ring. If R is a central *-reflexive ring, then R is central $*$-semicommutative.

The next example shows that a central $*$-reflexive ring need not be central $*$-semicommutative.
Example 2.14 Let $R=\left(M_{n}(\mathbb{C}), M_{n}(\mathbb{C})\right)$ and $\bar{*}: R \rightarrow R$ defined by $(A, B)^{*}=\left(A^{*}, B^{*}\right)$ for any $A, B \in M_{n}(\mathbb{C})$, where $*$ is the conjugate transpose of matrices. $M_{n}(\mathbb{C})$ is central $*$-reflexive, then so is R. Now we show that R is not central $*$-semicommutative. Let

$$
a=\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) \in R .
$$

Then we have $a^{2}=0$. However,

$$
a a^{\bar{F}}=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right) \notin C(R) .
$$

It follows that $a R a^{*} \nsubseteq C(R)$, proving R is not central $*$-semicommutative.

3. Extensions of central *-reflexive rings

An element $a \in R$ is called self-adjoint if $a=a^{*}$. In particular, an idempotent e of a $*$-ring R is called a projection if $e^{*}=e=e^{2}$.

Proposition 3.1 For a $*$-ring R, the following are equivalent:
(1) R is central *-reflexive;
(2) $e R e$ is central $*$-reflexive for any projection $e \in R$;
(3) $e R$ is central $*$-reflexive for any central idempotent $e \in R$.

Proof $(1) \Rightarrow(2)$. Assume that R is a central $*$-reflexive ring and there is $e^{2}=e=e^{*} \in R$. For any eae, ebe $\in e R e$ satisfying $0=e a e(e R e) e b e=e a e R e b e$, we have

$$
e b e R(e a e)^{*}=e b e R(e a e e)^{*}=e b e e R e^{*}(e a e)^{*}=(e b e)(e R e)(e a e)^{*} \subseteq C(R)
$$

Thus $e R e$ is central *-reflexive.
$(2) \Rightarrow(1)$. This is obvious if we let the projection $e=1$.
$(1) \Leftrightarrow(3)$ is straightforward by the above proof since every central idempotent is a projection.

Recall that for a ring R and an (R, R)-bimodule M, the trivial extension of R by M is the ring $T(R, M)=R \oplus M$ with the usual addition and the following multiplication:

$$
\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)
$$

This is isomorphic to the ring of all matrices of the form $\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)$, where $r \in R, m \in M$ and the usual matrix operations are used.

Note that if R is a $*$-ring and $T(R, R)$ is the trivial extension of R, then $\bar{*}: T(R, R) \rightarrow T(R, R)$ defined by

$$
\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)^{\bar{*}}=\left(\begin{array}{cc}
a^{*} & b^{*} \\
0 & a^{*}
\end{array}\right)
$$

is an involution on $T(R, R)$.
Proposition 3.2 If the trivial extension $T(R, R)$ is central \neq-reflexive, then R is central *reflexive.

Proof Suppose that R is a $*$-ring and $T(R, R)$ is central ${ }_{*}$-reflexive. Let $a, b \in R$ such that $a R b=0$. We have

$$
\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right) T(R, R)\left(\begin{array}{cc}
0 & b \\
0 & 0
\end{array}\right)=0
$$

It follows that

$$
\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right) T(R, R)\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)^{\bar{*}}=\left(\begin{array}{cc}
0 & b R a^{*} \\
0 & 0
\end{array}\right) \in C(T(R, R))
$$

since $T(R, R)$ is central $*$-reflexive. Thus, we have $b R a^{*} \subseteq C(R)$. Hence R is central $*$-reflexive.
Proposition 3.3 Let R be a reduced ring. If R is a central $*$-reflexive ring, then $T(R, R)$ is central $\overline{\#}$-reflexive ring.

Proof Let

$$
A=\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right), \quad C=\left(\begin{array}{cc}
c & d \\
0 & c
\end{array}\right) \in T(R, R)
$$

such that $A B C=0$ for every $B=\left(\begin{array}{cc}m & n \\ 0 & m\end{array}\right) \in T(R, R)$. Then we have

$$
\begin{gather*}
a m c=0 \tag{3.1}\\
a m d+a m c+b m c=0 . \tag{3.2}
\end{gather*}
$$

In the following, we freely use the fact that R is reduced and every reduced ring is semicommutative. From Eq. (3.1), we see that $a m c=0$, and so $a b m c=a m d c=0$. Multiplying Eq. (3.2) on the right side by c, we have $a m d c+(a n+b m) c^{2}=(a n+b m) c^{2}=(a n+b m) c=0$. This shows that

$$
\begin{equation*}
a n c+b m c=0 . \tag{3.3}
\end{equation*}
$$

Next multiplying Eq. (3.3) on the left side by a, we obtain $a^{2} n c+a b m c=a^{2} n c=0$ and so $a n c=0$. Hence Eq. (3.2) becomes:

$$
\begin{equation*}
a m d+b m c=0 \tag{3.4}
\end{equation*}
$$

Multiplying Eq. (3.4) on the left side by a, we obtain $a^{2} m d+a b m c=a^{2} m d=0$. This shows that $a m d=0$, and so $b m c=0$. Now we obtain $a m c=a m d=a n c=b m c=0$. Since R is
a central $*$-reflexive ring, we have $c m a^{*} \in C(R), d m a^{*} \in C(R), c n a^{*} \in C(R), c m b^{*} \in C(R)$. Therefore, we get

$$
C B A^{\bar{*}}=\left(\begin{array}{cc}
c m a^{*} & c m b^{*}+c n a^{*}+d m a^{*} \\
0 & c m a^{*}
\end{array}\right) \in C(T(R, R))
$$

which implies that $T(R, R)$ is central \neq-reflexive.
Proposition 3.4 If $\left\{R_{i}: i \in I\right\}$ is a class of central *-reflexive rings, then $\Pi_{i \in I} R_{i}$ is central *-reflexive.

Proof Let R_{i} be central $*$-reflexive rings for all $i \in I$. Let $S=\Pi_{i \in I} R_{i}$ and $\left(a_{i}\right),\left(b_{i}\right) \in S$ such that $\left(a_{i}\right) S\left(b_{i}\right)=0$. This gives $a_{i} R_{i} b_{i}=0$ for all $i \in I$. Since R_{i} is central $*$-reflexive for each $i \in I, b_{i} R_{i} a_{i}^{*} \subseteq C\left(R_{i}\right)$ for all $i \in I$. Thus $\left(b_{i}\right) S\left(a_{i}^{*}\right) \subseteq C(R)$. This implies that S is central *-reflexive.

Recall that an element u of a ring R is right regular if $u r=0$ implies $r=0$ for $r \in R$. Left regular elements can be similarly defined. An element is regular if it is both left and right regular. For a $*$-ring R, let \triangle be a multiplicative monoid in R consisting of central regular elements. Then

$$
\triangle^{-1} R=\left\{u^{-1} a \mid u \in \triangle, a \in R\right\}
$$

is a ring. If \triangle is closed under $*$, then $\bar{*}: \triangle^{-1} R \rightarrow \Delta^{-1} R$ defined by $\left(u^{-1} a\right)^{\bar{*}}=\left(u^{*}\right)^{-1} a^{*}$ is an involution of $\triangle^{-1} R$.

Proposition 3.5 For a *-ring R, R is central $*$-reflexive if and only if $\triangle^{-1} R$ is central $\#$-reflexive.
Proof Let R be a central $*$-reflexive ring. Let $u^{-1} a, v^{-1} b \in \triangle^{-1} R$ with $u, v \in \triangle$ and $a, b \in R$ such that $\left(u^{-1} a\right) \triangle^{-1} R\left(v^{-1} b\right)=0$. Then we have $a R b=0$. By assumption, $b R a^{*} \subseteq C(R)$. Therefore, we have

$$
\left(v^{-1} b\right) \triangle^{-1} R\left(u^{-1} a\right)^{\bar{F}}=\left(v^{-1} b\right) \triangle^{-1} R\left(u^{*}\right)^{-1} a^{*} \subseteq C\left(\triangle^{-1} R\right)
$$

and hence $\triangle^{-1} R$ is central $\#$-reflexive. Conversely, assume that $\triangle^{-1} R$ is central \neq-reflexive. Let $a, b \in R$ such that $a R b=0$. This implies that $a\left(\triangle^{-1} R\right) b=0$. Since $\triangle^{-1} R$ is central \neq-reflexive, $b\left(\triangle^{-1} R\right) a^{*}=b\left(\triangle^{-1} R\right) a^{*} \subseteq C\left(\triangle^{-1} R\right)$. Therefore, we get $b R a^{*} \subseteq C(R)$. This shows that R is central $*$-reflexive.

The ring of Laurent polynomials in x, over a ring R, consists of all formal sums $\sum_{i=k}^{n} r_{i} x^{i}$ with usual addition and multiplication, where $r_{i} \in R$ and $k, n \in \mathbb{Z}$. This ring is denoted by $R\left[x ; x^{-1}\right]$ [7]. Moreover, if R is a ring with involution $*$, then $\mp: R\left[x ; x^{-1}\right] \rightarrow R\left[x ; x^{-1}\right]$ defined by $\left(\sum_{i=k}^{n} a_{i} x^{i}\right)^{\bar{*}}=\sum_{i=k}^{n} a_{i}^{*} x^{i}$ extends $*$ and also is an involution of $R\left[x ; x^{-1}\right]$. Let $\Delta=\left\{1, x, x^{2}, \ldots\right\}$. Then clearly \triangle is a multiplicative monoid in $R[x]$ consisting of central regular elements, and \triangle is closed under $\bar{*}$ (in fact, $x^{\bar{*}}=x$). Then we have the following

Corollary 3.6 $R[x]$ is central $\#$-reflexive if and only if $\triangle^{-1} R[x]$ is central $\#$-reflexive.
Corollary 3.7 For a ring $R, R[x]$ is central \mp-reflexive if and only if $R\left[x ; x^{-1}\right]$ is central $\neq-$
reflexive.
For an algebra R over a commutative ring S, the Dorroh extension of R by S is the Abelian group $D=R \oplus S$ with multiplication given by

$$
\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}+s_{1} r_{2}+s_{2} r_{1}, s_{1} s_{2}\right)
$$

where $r_{i} \in R$ and $s_{i} \in R$. If R is an algebra with involution $*$, then $*$ can induce an involution $\bar{*}: D \rightarrow D$ defined by $(r, s)^{\bar{*}}=\left(r^{*}, s\right)$.

Proposition 3.8 Let R be an algebra over a commutative ring S. Then R is central *-reflexive if and only if the Dorroh extension D of R by S is central $\not \approx$-reflexive.

Proof Since every $s \in S$ can be written as $s=s \cdot 1_{R}$, we have $R=\{r+s:(r, s) \in D\}$. Let R be central $*$-reflexive and $\left(r_{1}, s_{1}\right) D\left(r_{2}, s_{2}\right)=0$. Then $\left(r_{1}, s_{1}\right)(r, s)\left(r_{2}, s_{2}\right)=0$ for any $(r, s) \in D$. This implies

$$
r_{1} r r_{2}+s_{1} r r_{2}+s r_{1} r_{2}+s_{2} r_{1} r+s_{1} s r_{2}+s_{1} s_{2} r+s s_{2} r_{1}=0 \text { and } s_{1} s s_{2}=0
$$

So $\left(r_{1}, s_{1}\right)(r, s)\left(r_{2}, s_{2}\right)=0$ is equivalent to $\left(r_{1}+s_{1}\right)(r+s)\left(r_{2}+s_{2}\right)=0$ with $s_{1} s s_{2}=0$. This gives $\left(r_{1}+s_{1}\right) R\left(r_{2}+s_{2}\right)=0$ with $s_{2} S s_{1}=0$. Since R is central $*$-reflexive and S is commutative, we have $\left(r_{2}, s_{2}\right) R\left(r_{1}, s_{1}\right)^{*}=\left(r_{2}, s_{2}\right) R\left(r_{1}^{*}, s_{1}\right) \subseteq C(R)$ with $s_{2} S s_{1}=0$. This gives $\left(r_{2}, s_{2}\right)(r, s)\left(r_{1}^{*}, s_{1}\right)=\left(r_{2}, s_{2}\right)(r, s)\left(r_{1}, s_{1}\right)^{\bar{*}} \in C(D)$ and so, $\left(r_{2}, s_{2}\right) D\left(r_{1}, s_{1}\right)^{\bar{F}} \subseteq C(D)$. Hence D is central $\bar{*}$-reflexive.

Conversely, suppose D is central $\bar{*}$-reflexive. Let $a, b \in R$ such that $a R b=0$. Then $(a, 0) D(b, 0)=(a R b+S a b, 0)=0$. By assumption, we have $(b, 0) D(a, 0)^{\bar{*}}=(b, 0) D\left(a^{*}, 0\right) \subseteq$ $C(D)$. It follows that $(b, 0)(R, 0)\left(a^{*}, 0\right)=\left(b R a^{*}, 0\right) \in C(D)$. Therefore, $b R a^{*} \subseteq C(R)$, proving that R is central $*$-reflexive.

A ring R is an Armendariz ring if whenever the product of two polynomials in $R[x]$ is zero, each product of their coefficients is zero. Quasi-Armendariz rings are a generalization of Armendariz rings defined in [8]. A ring R is quasi-Armendariz if whenever

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{i}, \quad g(x)=\sum_{j=0}^{m} b_{j} x^{j}
$$

satisfy $f(x) R[x] g(x)=0$, then $a_{i} R b_{j}=0$ for all i, j.
Proposition 3.9 Let R be a quasi-Armendariz ring such that it is also central *-reflexive. Then $R[x]$ is central $\#$-reflexive.

Proof Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in R[x]$ such that $f(x) R[x] g(x)=0$. Since R is quasi-Armendariz, $a_{i} R b_{j}=0$ for all i, j. Since R is central $*$-reflexive, $b_{j} R a_{i}^{*} \subseteq C(R)$. Thus $g(x) R[x] f(x)^{\bar{*}} \subseteq C(R[x])$ and hence $R[x]$ is central $\bar{*}$-reflexive.

Acknowledgements We thank the referees for their time and comments.

References

[1] P. M. COHN. Reversible rings. Bull. London Math. Soc., 1999, 31: 641-648.
[2] G. MASON. Reflexive ideals. Comm. Algebra, 1981, 9(17): 1709-1724.
[3] U. S. CHAKRABORTY. On some classes of reflexive rings. Asian-Eur. J. Math., 2015, 8: 1-15.
[4] W. M. FAKIEH, S. K. NAUMAN. Reversible rings with involutions and some minimalities. The Scientific World Journal, 2013, 6: 650702.
[5] Liang ZHAO, Xiaosheng ZHU, Qinqin GU. Reflexive rings and their extensions. Math. Slovaca, 2013, 63(3): 417-430.
[6] T. K. KWAK, Y. LEE. Reflexive property of rings. Comm. Algebra, 2012, 40(4): 1576-1594.
[7] Y. HIRANO. On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra, 2002, 168: 45-52.
[8] N. K. KIM, Y. LEE. Armendariz rings and reduced Rings. J. Algebra, 2000, 223: 477-488.

