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1. Introduction and the main results

Let M be an n-dimensional compact, oriented Riemannian manifold. If n (> 4), it is well-
known that the Riemannian curvature tensor R,, of M can be decomposed into three mutual
orthogonality parts:

Ry =W4+V+U, (1.1)

where W denotes the Weyl conformal curvature tensor (when n = 3, W = 0), V and U denote
the free trace part of the Ricci curvature tensor and the scalar curvature part, respectively. The
curvature tensor W,V contain rich information about M. When W = 0 (resp., V = 0), the
Riemannian manifold M is locally conformally flat manifold (resp., Einstein manifold).

Let D = W 4 V be the concircular curvature vector, which plays an important role in
conformal geometry [1-3]. One can check that M is a space form if and only if D = 0. Thus
one can think of the concircular curvature tensor as a measure of the failure of a Riemannian
manifold to be of constant curvature. Mutd [4] proved that if the concircular curvature is small
enough, then an Einstein manifold must be a space form. For a manifold with positive scalar

curvature, Huisken [5] proved the following theorem:

Theorem 1.1 Let n > 4. Suppose M™ is a smooth compact n-dimensional manifold with the

positive scalar curvature and satisfies the pinching condition

D2 = W] + [V]* < 6a(1 = €)?[U|1%, (1.2)
where € > 0, §, = %, = % and
2
0g= ——— > 6.
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Then M™ is diffeomorphic to the sphere S™ or a quotient space of S™ by a group of fixed point

free isometries in the standard metric.

In this article, we study the geometric property of the locally conformally symmetric Rie-
mannian manifold, and obtain a global rigidity theorem for the length of concircular curvature
tensor. When the tensor W satisfies VW = 0, the Riemannian manifolds are called locally
conformally symmetric manifolds, which include many Riemannian manifolds also, for instance,
locally conformally flat Riemannian manifolds and locally symmetric Riemannian manifolds. In
fact, as shown by Witold Roter [6], such manifolds are necessarily locally conformally flat or
locally symmetric.

By [7, Theorem 6] we know that every compact locally conformally symmetric Riemannian
manifold is a manifold with constant scalar curvature. We can only consider the case that
the manifold M has constant scalar curvature R > 0. Moreover, we can assume, by taking a
appropriately similar transformation if necessary, that R = n(n —1). From now on, let o = || D||
be the length of the concircular curvature tensor. In this paper, we will prove the following

results.

Theorem 1.2 Suppose M™ (n > 4) is a closed locally conformally symmetric Riemannian
manifold with scalar curvature R =n(n —1). If

n

3+vn—2

o<

then 0 = 0, and M is a space form.

Theorem 1.3 Suppose M™ (n > 4) is a closed locally symmetric conformal Riemannian manifold
with scalar curvature R = n(n — 1). Then there exists a constant e = e(n) > 0 depending only

on n, which satisfies the following condition: if

||O' n
2

min(clg ,vol(M)%)

then 0 = 0, and M is a space form with constant section curvature 1, where c; is the isoperimetric
constant of M, and vol(M) is the volume of M.

Remark 1.4 When M™" is a locally conformally flat Riemannian manifold, then Theorems 1.3
and 1.4 hold for n > 3.

2. Preliminaries

A Riemannian manifold is closed if it is compact, without boundary. Let (M™, g) be a closed

Riemannian manifold of dimension n (n > 3). {e1,...,e,} are local orthonormal frames and
Wi, ... ,wy, are the dual frames, {w;;} are connection 1-forms. We have the following structure
equations:

dw; = — ZwijAWja Wij + Wi = 0, (2.1)
J
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1
dwij - — gwikAwkj - 5 ; Rijklwk/\wl. (22)

Here R;jj; are the components of Riemannian curvature tensor of M™. Unless otherwise stated,
we assume that the indexes range from 1 to n.
Ricci curvature and scalar curvature are defined by R;; = ), Ryj; and R = ), Ry, respec-

tively. It is well-known that

Rijii = —Rji = —Rijie = Ry (2.3)
Rijii + Riji + Riki; = 0, (2.4)
Rijki,m + Rijmig + Rijim,, = 0. (2.5)

Under the local orthonormal frames, the components of tensor U,V in (1.1) are

R
L NS Y SN S o 2.
Uz_]k:l TL(TL — 1) (5zk6]l 51l6]k)a ( 6)
1 . . R .
Vijel = m(aikle + 0 Rir. — 0 R — 6 Rar), (2.7)
where
. 1

Rij == Rij - ER(L]

Then the components of the Weyl curvature tensor W and the concircular curvature tensor D

are given as follows:

Wikt = Rijir — Vij — Uij

1 R
= Rijn — m((sikRﬂ + 0 Rik — 0aRjk — 0 Ri) + m(@Mﬂ — 0310,
(2.8)
R
Dijri = Rijii — Usjrg = Rijra — m(@'k@'l — 0i10k). (2.9)

When M is an Einstein manifold, the concircular curvature tensor D is just the Weyl conformal
curvature tensor W.

Now we define the Schouten tensor by S = S;;w; ® w;, where

R
It is clear that S;; = Sj;, and (2.8) can be rewritten
1
Wik = Rijp — m(fsiksjz +61Sik — 0uSjr — 01 Su)- (2.11)

Using the Schouten tensor, we can define the Cotten tensor by
Bijk = Sik,j — Sij k- (2.12)

Using (2.3)-(2.5), we get
Rijp — Rij = — Z Riijk,t, (2.13)
1
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then )
> Rij;= SR (2.14)
J
From (2.10) and (2.14), we get
n—2
= ——— R 2.1
;S]:J 2(7’1— 1)Ra ( 5)
From (2.10), (2.12) and (2.14), we have
1
Sijk — Sik; = — Z Riijrg — m(% Z Skt — Oik Z Siii)- (2.16)
! [ [
Substituting (2.11) into (2.16),
1
Sijk — Sikj = — zz: Wisjk — m(sik,j — Sijk)- (2.17)
If n > 3, then
n—3
Bikj = Sijk — Sik,j = T2 Z Wiijik,i- (2.18)
l

The Weyl conformal curvature tensor W is harmonic if ), Wi;j,; = 0, i.e., Bjr; = 0. We say the
manifold M is a conformally symmetric Riemannian manifold if VW = 0. Moreover, if W = 0,
then M is a conformally flat manifold. It is well-known that M?3 is a conformally flat manifold if
and only if B;;, = 0 (see [8]), and the Schouten tensor must be the Codazzi tensor. From above

argument, we obtain:

Proposition 2.1 Let (M™,g) be an n(n > 3)-dimensional Riemannian manifold. Then the
Schouten tensor is the Codazzi tensor if and only if the Cotten tensor vanishs. When M™ (n > 4)
is a conformally symmetric Riemannian manifold, then B;j, = 0, and the Schouten tensor is

always the Codazzi tensor, i.e., Sik ; = Sij k-
3. The proof for a global rigidity theorem
Since R = n(n — 1), (2.9) is rewritten
Dijri = Rijri — (dirdj1 — 60k )- (3.1)

One can derive the following identities

Dijrt = —Djirt = —Diji = Diiijs (3.2)
Dijri + Diji + Dirt; = 0, (3.3)

Dijkt,m + Dijmi, + Dijimk = 0, (3.4)
ZDiﬁl = le - (n - 1)5jl7 (35)

ID|* = Z Dy = Z R —2n(n — 1). (3.6)

.3,k .5,k
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Substituting (3.5) into (2.10), we get

R
Sij = Z Diljl - (m +n— 1)(5” (37)
l

Using R = n(n — 1) again, we obtain
Sijk = (;Dilﬂ)k = ;Diljl,k- (3.8)

Now we compute A|D|?. From (3.4), we have D;jkimm = Dijkm,im + Dijmikm- Applying
the Ricci identity, we have

1
§A||D||2= > Dim+ D DigmDijktmm

i.3,k,l,m .3,k,l,m

=|VDI?+2 Z DijriDijrm,im

,3,k,L,m

:HVI)”2 +2 Z Dijkl(Dijkm,ml + Dhjkahil'rn"'
i,5,k,l,h,m

DinemRhjim + Dijhm Rukim + DijenRnt)- (3.9)

From (3.2) and (3.4), we get

Z Dijkm,nLl = (Z Dijkm,m),l = (Z Dknn’j,’m),l = _(Z kajm,i + Z kami,j),l
m m m m m

~() " Dimjm.i = Y Dimimi)i = —(Skji — Ski ) =0, (3.10)

where we have used Proposition 2.1 and (3.8). Substituting Ri;x = Dijri+ (dixdji —0:10,%), Rji =
> i Diji + (n —1)d;; and (3.10) into (3.9), we have

1 1
EAHDH2 =§||VD||2 + > Dijtt(DinkmDnjim — Dijnkm Dhitm)+

i,5,k,0,h,m
2
E DijkiDijhm Dakim + 2 E D;jriDiikj — E D%~
ikl hym ikl gkl
2 E 2 : 2
2 Z(Z Dljlk) + Dijthijlemhml + (n - 1) Dijkl' (311)
Skl i,9,k,1,h,m gl

From (3.3), we get
2
E DijriDir; = E Dijri(—Dirji — Dijir) = E D7 — E DijriDitgj-
1,5,k,1 ik, 1,5,k,1 1,5,k,l

Hence we have

2 Z DijriDir; = Z ijkl. (3.12)
1,9kl i,5,k,0
Likewise
1
> DijuDijnmDnkim = —3 > DijtiDkinm Dhmij- (3.13)

,3,k,L,h,m ,3,k,L,h,m
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Substituting (3.12) and (3.13) into (3.11), we obtain

1 1
ZAHDH2 =§||VD||2 + Z Dijri(DinkmDhjim — Dinkem Dhitm)—

ikl hm
2 g E Dyjie)* + E D;iiinDijri Dmpmi—
ki ikl hm
1
2
5 E Dijti DyihmDrmi; + (n — 1)||D]|*.
4,9,k h,m

Lemma 3.1 ([9]) Let A, B be anti-symmetric matrixes. Then
114, Bl < V2|l All|| BII,
where [A, B] = AB — BA, ||A||> = (A, A), and (A, B) = —4tr(AB).

Shipei HU

(3.14)

Lemma 3.2 ([9]) Let 0 = (s;5) be a symmetric n x n matrix with s;; > 0 for any i,j and s;; = 0

for any i. If trace(o?) = n(n — 1), then
tr(o3) < n(n—1)(n —2).

The equality holds if and only if s;j = 1 — 0;;.

Lemma 3.3 ([10]) Let S;;x; be a (0, 4)-tensor, n > 2, and S, i satisfies the following identities

Sijkt = —=Sjikt = —Sijik = Skiij-
Let Sj; = >, Siji, S = >_; Sis. Then
252
S? §2 - 22
%l Jk:l v J (n— 1)(,’7]72)

Denote by Dij = (Diyij), then f)ij is an anti-symmetric matrix for every given pair (i, j).

Now we have
Z Dkt (DinkmDnjim — DjnkmDhitm) = 2 Z (Dt [Dims D))
i,5,k,l,h,m k,l,m

Using Lemma 3.1, we have

2| Z (Dt [Dkms Dim])| < 2 Z (Dt [Dkems Dim])| < 2 Z I Dsall - 1Dk D]

k,l,m k,l,m k,l,m
<2v2 > Dull - 1Dl - 1Dumll = D Sk Smisin
k,l,m k,l,m

where s;; = v/2|| Dy;||. Denote by o = (s;),t = 7V7‘L|(DH then

tr((to)?) = t2Tr(0?) = thZHDMH2 =t )" D}y, =t*|D|* =n(n-1).

2,7,k,l

Applying Lemma 3.2, we have Tr((to)g) < n(n—1)(n —2). Thus, we get

> Dijit(Dinkm Dhjim — Djnkm Dhitm) <2| Y (Dit, [Dims Dim))|
i,5,k,l,h,m k,l,m
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n—2

<———|DJI*.
n(n—1)

Since E” Djj;; = 0, we can use Lemma 3.3 and get

n—2 n—2
Z(Z Dyjir)? < 4 Z D = THDHQa
1

Jiksl .5,k
1 1
2 2 2 2
Z Dijthijlemhml‘ S Z ( Z Dijkl) ( Z Dijkh) Z Dmhml
irj kL h,m hl ik ij.k m

n—2
< D|3.
<\/“-Ip|

Meanwhile, we use the Cauchy inequality and get

‘ E D11 Drihm Dhmij

,3,k,L,h,m

Substituting (3.15),(3.16),(3.17) and (3.18) into (3.14), we have

<|DJ.

S
I
[N)
[t

n—2
+ -4+ ——= D3
ot eI

n 1
> 2|ID|* - 5 (V=2 +3)|DJ

1 1 n
ZA|ID|? > Z|IVD|? + =||D||*> -
JAIDIP = SIVDI? + S|~ (

Integrating over M, we have
1
/ LT )01 <0,
M2 2
where o = || D]||.
When g < 34-7\7@’
proof of Theorem 1.2. (I

When the scalar curvature R = n(n — 1), from (3.6) we have the following corollary.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

it is easy to obtain o = ||D|| = 0, M is a space form. This finishes the

Corollary 3.4 Assume that M™ (n > 4) is a closed locally conformally symmetric Riemannian

manifold, and the scalar curvature R = n(n — 1). If

n
2n(n—1) < Z RZjy <2n(n—1) + (m)27

then > Rz‘ijl = 2n(n — 1) holds, and M is a space form.

Lemma 3.5 ([11]) Let M™ (n > 3) be a closed Riemannian manifold. If f € Hy (M), then

112y < a [ 1972)F + Rl

where
Tl—l 3n+42 _1
ki, = 227 Oy,
n—2

E(n) | nt4
_ 95 +5
ko =272 n

(n—4)(n—2)

B(3) = 1,E(n) = 21—,

Vn > 3,
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- (Area S)"
Ci(M) = Slgg/l [min(vol(M ), vol(Mz))"~1’

where hypersurface S divides M into two parts: M = My |J Ma.

Remark 3.6 There are some typos about this lemma in [11]. For more details we refer reader
o [11].
Denote by

1 vn—2 1 -2
o () AL . .
2 2 2 n(n—1)

Applying the Cauchy inequality, we get

|VI)||2 Z Dz]klm = ||VO'||2

i,7,k,l,m
Then from (3.19), we have
A o+ Co(n)o? —no > 0. (3.20)
Hence, we get
A o+ Cy(n)o? > no > 0. (3.21)

Multiplying (3.21) by 0® (a > 1), and applying integration by parts, we get

4o a+1 1 _LH
CO(TL)/O’QJFZ Z m/lvg 2 |22 E/‘VU |2 (322)

atl

Choosing f = o2 , and applying Lemma 3.5, we obtain

o gy < ka(( [ 1948)" + Bl
1
<kt (o2)" ko1

< Cy(n)[Cy " (n)az|o - o™ TH||7 4 vol (M)~ [lo "3 o], (3.23)

Nl

Now Choosing o+ 1 = %, and applying the Holder inequality to ||o - o2 ||y, we get

1 1 n 1 n
0% || 22, < C3(n)[Cy ™ (1) Nl Nlo || 2a; +vol(M) 7 ]| £]. (3.24)
Now we obtain a constant € (n) > 0 which only depends on n. And for any € < €'(n), if
2
olle <Cfé, (3.25)
then
4 _ 4 _ 4 2 ’
lolly = o1 < Calmvol(M) ™ lolly = Calmvol (M)~ e
< C5(n)vol(M)_FC’1’%, (3.26)
where ¢ = g%

For any « > 1, using the Holder inequality, interpolation inequality and (3.26), we have

a+1l
I

lo- oy < llollg llo > |22
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2 a n— a
< Cs(n)vol(M) ™2 CF (005 || 2w + 0772 05 ||2). (3.27)
Substituting (3.27) into (3.23) gives

[0 1 22, <Co(m)ar®vol(M) ™= 0l|o™" | 20, -

a?vol(M) ™70~ "% +vol(M) 7w |o" ||a). (3.28)
Choosing 0 = %C’G(n)_loz_%vol(M)n%7 then we have from (3.28)
0" [ 22, < Cr(m)a¥vol(M) ™% [lo™3 . (3.29)

Writing x = -3, and choosing a + 1 = Zx*,i > 0, we have

1 1 4 1
O'ﬂiJrlSanXiXXiVOlM 2 xt|o||n .y
2X 2X

1

< Cy(m) ¥ R T R ol e G g

o,
Let i — co. We get 0 < Cg(n)vol(M)_%HoH%. If ¢ < 37~—=, we obtain ¢ = 0 from Theorem

VvVn—2’
1.2, and M is a space form. Therefore, when

Co(n)vol(M) ™ |o

that is, [|o||n < Cho(n)vol(M)= = €’ (n)vol(M)#, we have o = 0.

Combining condition (3.25), i.e., ||o

2
» < O ¢, we may take e = min(¢'(n),€”(n)). When
2
loflz < emin( 1, vol(M)#), it is easy to see that o = 0. The proof of Theorem 1.3 is complet-
ed. O
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