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1. Introduction and the main results

Let M be an n-dimensional compact, oriented Riemannian manifold. If n (≥ 4), it is well-

known that the Riemannian curvature tensor Rm of M can be decomposed into three mutual

orthogonality parts:

Rm = W + V + U, (1.1)

where W denotes the Weyl conformal curvature tensor (when n = 3, W ≡ 0), V and U denote

the free trace part of the Ricci curvature tensor and the scalar curvature part, respectively. The

curvature tensor W,V contain rich information about M . When W = 0 (resp., V = 0), the

Riemannian manifold M is locally conformally flat manifold (resp., Einstein manifold).

Let D = W + V be the concircular curvature vector, which plays an important role in

conformal geometry [1–3]. One can check that M is a space form if and only if D = 0. Thus

one can think of the concircular curvature tensor as a measure of the failure of a Riemannian

manifold to be of constant curvature. Mutô [4] proved that if the concircular curvature is small

enough, then an Einstein manifold must be a space form. For a manifold with positive scalar

curvature, Huisken [5] proved the following theorem:

Theorem 1.1 Let n ≥ 4. Suppose Mn is a smooth compact n-dimensional manifold with the

positive scalar curvature and satisfies the pinching condition

∥D∥2 = ∥W∥2 + ∥V ∥2 ≤ δn(1− ϵ)2∥U∥2, (1.2)

where ϵ > 0, δ4 = 1
5 , δ5 = 1

10 and

δ6 =
2

(n− 1)(n+ 1)
, n ≥ 6.
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Then Mn is diffeomorphic to the sphere Sn or a quotient space of Sn by a group of fixed point

free isometries in the standard metric.

In this article, we study the geometric property of the locally conformally symmetric Rie-

mannian manifold, and obtain a global rigidity theorem for the length of concircular curvature

tensor. When the tensor W satisfies ▽W = 0, the Riemannian manifolds are called locally

conformally symmetric manifolds, which include many Riemannian manifolds also, for instance,

locally conformally flat Riemannian manifolds and locally symmetric Riemannian manifolds. In

fact, as shown by Witold Roter [6], such manifolds are necessarily locally conformally flat or

locally symmetric.

By [7, Theorem 6] we know that every compact locally conformally symmetric Riemannian

manifold is a manifold with constant scalar curvature. We can only consider the case that

the manifold M has constant scalar curvature R > 0. Moreover, we can assume, by taking a

appropriately similar transformation if necessary, that R = n(n− 1). From now on, let σ = ∥D∥
be the length of the concircular curvature tensor. In this paper, we will prove the following

results.

Theorem 1.2 Suppose Mn (n ≥ 4) is a closed locally conformally symmetric Riemannian

manifold with scalar curvature R = n(n− 1). If

σ <
n

3 +
√
n− 2

,

then σ = 0, and M is a space form.

Theorem 1.3 SupposeMn (n ≥ 4) is a closed locally symmetric conformal Riemannian manifold

with scalar curvature R = n(n − 1). Then there exists a constant ϵ = ϵ(n) > 0 depending only

on n, which satisfies the following condition: if

∥σ∥n
2

min(c
n
2
1 , vol(M)

n
2 )

< ϵ,

then σ = 0, andM is a space form with constant section curvature 1, where c1 is the isoperimetric

constant of M , and vol(M) is the volume of M .

Remark 1.4 When Mn is a locally conformally flat Riemannian manifold, then Theorems 1.3

and 1.4 hold for n ≥ 3.

2. Preliminaries

A Riemannian manifold is closed if it is compact, without boundary. Let (Mn, g) be a closed

Riemannian manifold of dimension n (n ≥ 3). {e1, . . . , en} are local orthonormal frames and

ω1, . . . , ωn are the dual frames, {ωij} are connection 1-forms. We have the following structure

equations:

dωi = −
∑
j

ωijΛωj , ωij + ωji = 0, (2.1)
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dωij = −
∑
k

ωikΛωkj −
1

2

∑
k,l

RijklωkΛωl. (2.2)

Here Rijkl are the components of Riemannian curvature tensor of Mn. Unless otherwise stated,

we assume that the indexes range from 1 to n.

Ricci curvature and scalar curvature are defined by Rij =
∑

l Riljl and R =
∑

l Rll, respec-

tively. It is well-known that

Rijkl = −Rjikl = −Rijlk = Rklij , (2.3)

Rijkl +Riljk +Riklj = 0, (2.4)

Rijkl,m +Rijmk,l +Rijlm,k = 0. (2.5)

Under the local orthonormal frames, the components of tensor U, V in (1.1) are

Uijkl =
R

n(n− 1)
(δikδjl − δilδjk), (2.6)

Vijkl =
1

n− 2
(δikR̂jl + δjlR̂ik − δilR̂jk − δjkR̂il), (2.7)

where

R̂ij = Rij −
1

n
Rδij .

Then the components of the Weyl curvature tensor W and the concircular curvature tensor D

are given as follows:

Wijkl = Rijkl − Vijkl − Uijkl

= Rijkl −
1

n− 2
(δikRjl + δjlRik − δilRjk − δjkRil) +

R

(n− 1)(n− 2)
(δikδjl − δilδjk),

(2.8)

Dijkl = Rijkl − Uijkl = Rijkl −
R

n(n− 1)
(δikδjl − δilδjk). (2.9)

When M is an Einstein manifold, the concircular curvature tensor D is just the Weyl conformal

curvature tensor W .

Now we define the Schouten tensor by S = Sijωi ⊗ ωj , where

Sij = Rij −
R

2(n− 1)
δij . (2.10)

It is clear that Sij = Sji, and (2.8) can be rewritten

Wijkl = Rijkl −
1

n− 2
(δikSjl + δjlSik − δilSjk − δjkSil). (2.11)

Using the Schouten tensor, we can define the Cotten tensor by

Bijk = Sik,j − Sij,k. (2.12)

Using (2.3)–(2.5), we get

Rij,k −Rik,j = −
∑
l

Rlijk,l, (2.13)
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then ∑
j

Rij,j =
1

2
R,i. (2.14)

From (2.10) and (2.14), we get ∑
j

Sij,j =
n− 2

2(n− 1)
R,i. (2.15)

From (2.10), (2.12) and (2.14), we have

Sij,k − Sik,j = −
∑
l

Rlijk,l −
1

n− 2
(δij

∑
l

Skl,l − δik
∑
l

Sjl,l). (2.16)

Substituting (2.11) into (2.16),

Sij,k − Sik,j = −
∑
l

Wlijk,l −
1

n− 2
(Sik,j − Sij,k). (2.17)

If n > 3, then

Bikj = Sij,k − Sik,j = −n− 3

n− 2

∑
l

Wlijk,l. (2.18)

The Weyl conformal curvature tensor W is harmonic if
∑

l Wlijk,l = 0, i.e., Bikj = 0. We say the

manifold M is a conformally symmetric Riemannian manifold if ▽W = 0. Moreover, if W = 0,

then M is a conformally flat manifold. It is well-known that M3 is a conformally flat manifold if

and only if Bijk = 0 (see [8]), and the Schouten tensor must be the Codazzi tensor. From above

argument, we obtain:

Proposition 2.1 Let (Mn, g) be an n(n ≥ 3)-dimensional Riemannian manifold. Then the

Schouten tensor is the Codazzi tensor if and only if the Cotten tensor vanishs. When Mn (n ≥ 4)

is a conformally symmetric Riemannian manifold, then Bijk ≡ 0, and the Schouten tensor is

always the Codazzi tensor, i.e., Sik,j = Sij,k.

3. The proof for a global rigidity theorem

Since R = n(n− 1), (2.9) is rewritten

Dijkl = Rijkl − (δikδjl − δilδjk). (3.1)

One can derive the following identities

Dijkl = −Djikl = −Dijlk = Dklij , (3.2)

Dijkl +Diljk +Diklj = 0, (3.3)

Dijkl,m +Dijmk,l +Dijlm,k = 0, (3.4)∑
i

Dijil = Rjl − (n− 1)δjl, (3.5)

∥D∥2 =
∑
i,j,k,l

D2
ijkl =

∑
i,j,k,l

R2
ijkl − 2n(n− 1). (3.6)
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Substituting (3.5) into (2.10), we get

Sij =
∑
l

Diljl − (
R

2(n− 1)
+ n− 1)δij . (3.7)

Using R = n(n− 1) again, we obtain

Sij,k =
(∑

l

Diljl

)
,k

=
∑
l

Diljl,k. (3.8)

Now we compute ∆∥D∥2. From (3.4), we have Dijkl,mm = Dijkm,lm +Dijml,km. Applying

the Ricci identity, we have

1

2
∆∥D∥2 =

∑
i,j,k,l,m

D2
ijkl,m +

∑
i,j,k,l,m

DijklDijkl,mm

=∥∇D∥2 + 2
∑

i,j,k,l,m

DijklDijkm,lm

=∥∇D∥2 + 2
∑

i,j,k,l,h,m

Dijkl(Dijkm,ml +DhjkmRhilm+

DihkmRhjlm +DijhmRhklm +DijkhRhl). (3.9)

From (3.2) and (3.4), we get∑
m

Dijkm,ml = (
∑
m

Dijkm,m),l = (
∑
m

Dkmij,m),l = −(
∑
m

Dkmjm,i +
∑
m

Dkmmi,j),l

= −(
∑
m

Dkmjm,i −
∑
m

Dkmim,j),l = −(Skj,i − Ski,j),l = 0, (3.10)

where we have used Proposition 2.1 and (3.8). Substituting Rijkl = Dijkl+(δikδjl−δilδjk), Rjl =∑
i Dijil + (n− 1)δjl and (3.10) into (3.9), we have

1

4
∆∥D∥2 =

1

2
∥∇D∥2 +

∑
i,j,k,l,h,m

Dijkl(DihkmDhjlm −DjhkmDhilm)+

∑
i,j,k,l,h,m

DijklDijhmDhklm + 2
∑
i,j,k,l

DijklDilkj −
∑
i,j,k,l

D2
ijkl−

2
∑
j,k,l

(
∑
l

Dljlk)
2 +

∑
i,j,k,l,h,m

DijkhDijklDmhml + (n− 1)
∑
i,j,k,l

D2
ijkl. (3.11)

From (3.3), we get∑
i,j,k,l

DijklDilkj =
∑
i,j,k,l

Dijkl(−Dikjl −Dijlk) =
∑
i,j,k,l

D2
ijkl −

∑
i,j,k,l

DijklDilkj .

Hence we have

2
∑
i,j,k,l

DijklDilkj =
∑
i,j,k,l

D2
ijkl. (3.12)

Likewise ∑
i,j,k,l,h,m

DijklDijhmDhklm = −1

2

∑
i,j,k,l,h,m

DijklDklhmDhmij . (3.13)
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Substituting (3.12) and (3.13) into (3.11), we obtain

1

4
∆∥D∥2 =

1

2
∥∇D∥2 +

∑
i,j,k,l,h,m

Dijkl(DihkmDhjlm −DjhkmDhilm)−

2
∑
jkl

(
∑
l

Dljlk)
2 +

∑
i,j,k,l,h,m

DijkhDijklDmhml−

1

2

∑
i,j,k,l,h,m

DijklDklhmDhmij + (n− 1)∥D∥2. (3.14)

Lemma 3.1 ([9]) Let A,B be anti-symmetric matrixes. Then

∥[A,B]∥ ≤
√
2∥A∥∥B∥,

where [A,B] = AB −BA, ∥A∥2 = (A,A), and (A,B) = − 1
2 tr(AB).

Lemma 3.2 ([9]) Let σ = (sij) be a symmetric n×n matrix with sij ≥ 0 for any i, j and sii = 0

for any i. If trace(σ2) = n(n− 1), then

tr(σ3) ≤ n(n− 1)(n− 2).

The equality holds if and only if sij = 1− δij .

Lemma 3.3 ([10]) Let Sijkl be a (0, 4)-tensor, n > 2, and Sijkl satisfies the following identities

Sijkl = −Sjikl = −Sijlk = Sklij .

Let Sji =
∑

i Sijil, S =
∑

i Sii. Then∑
i,j,k,l

S2
ijkl ≥

4

n− 2

∑
i,j

S2
ij −

2S2

(n− 1)(n− 2)
.

Denote by D̂ij = (Dlmij), then D̂ij is an anti-symmetric matrix for every given pair (i, j).

Now we have ∑
i,j,k,l,h,m

Dijkl(DihkmDhjlm −DjhkmDhilm) = 2
∑
k,l,m

(D̂kl, [D̂km, D̂lm]).

Using Lemma 3.1, we have

2|
∑
k,l,m

(D̂kl, [D̂km, D̂lm])| ≤ 2
∑
k,l,m

|(D̂kl, [D̂km, D̂lm])| ≤ 2
∑
k,l,m

∥D̂kl∥ · ∥[D̂km, D̂lm]∥

≤ 2
√
2
∑
k,l,m

∥D̂kl∥ · ∥D̂km∥ · ∥D̂lm∥ =
∑
k,l,m

skmsmlslk,

where sij =
√
2∥D̂ij∥. Denote by σ = (sij), t =

√
n(n−1)

∥D∥ , then

tr((tσ)2) = t2Tr(σ2) = 2t2
∑
k,l

∥D̂kl∥2 = t2
∑
i,j,k,l

D2
ijkl = t2∥D∥2 = n(n− 1).

Applying Lemma 3.2, we have Tr((tσ)3) ≤ n(n− 1)(n− 2). Thus, we get∑
i,j,k,l,h,m

Dijkl(DihkmDhjlm −DjhkmDhilm) ≤2|
∑
k,l,m

(D̂kl, [D̂km, D̂lm])|
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≤ n− 2√
n(n− 1)

∥D∥3. (3.15)

Since
∑

i,j Dijij = 0, we can use Lemma 3.3 and get∑
j,k,l

(
∑
l

Dljlk)
2 ≤ n− 2

4

∑
i,j,k,l

D2
ijkl =

n− 2

4
∥D∥2, (3.16)

∣∣∣ ∑
i,j,k,l,h,m

DijkhDijklDmhml

∣∣∣ ≤ ∑
h,l

(∑
i,j,k

D2
ijkl

) 1
2
(∑

i,j,k

D2
ijkh

) 1
2
∑
m

Dmhml

≤
√

n− 2

4
∥D∥3. (3.17)

Meanwhile, we use the Cauchy inequality and get∣∣∣ ∑
i,j,k,l,h,m

DijklDklhmDhmij

∣∣∣ ≤ ∥D∥3. (3.18)

Substituting (3.15),(3.16),(3.17) and (3.18) into (3.14), we have

1

4
∆∥D∥2 ≥ 1

2
∥∇D∥2 + n

2
∥D∥2 − (

√
n− 2

2
+

1

2
+

n− 2√
n(n− 1)

)∥D∥3

≥ n

2
∥D∥2 − 1

2
(
√
n− 2 + 3)∥D∥3. (3.19)

Integrating over M , we have∫
M

(
n

2
− 1

2
(
√
n− 2 + 3)σ)σ2 ∗ 1 ≤ 0,

where σ = ∥D∥.
When σ < n

3+
√
n−2

, it is easy to obtain σ = ∥D∥ = 0, M is a space form. This finishes the

proof of Theorem 1.2. �
When the scalar curvature R = n(n− 1), from (3.6) we have the following corollary.

Corollary 3.4 Assume that Mn (n ≥ 4) is a closed locally conformally symmetric Riemannian

manifold, and the scalar curvature R = n(n− 1). If

2n(n− 1) ≤
∑

R2
ijkl ≤ 2n(n− 1) + (

n

3 +
√
n− 2

)2,

then
∑

R2
ijkl = 2n(n− 1) holds, and M is a space form.

Lemma 3.5 ([11]) Let Mn (n ≥ 3) be a closed Riemannian manifold. If f ∈ H1,2(M), then

∥f∥ 2n
n−2

≤ k1

(∫
|▽f |2

) 1
2

+ k2∥f∥2,

where

k1 =
n− 1

n− 2
· 2

3n+2
2n · C− 1

n
1 ,

k2 = 2
E(n)

2 +n+4
2n ,

E(3) = 1, E(n) =
(n− 4)(n− 2)

2
, ∀n > 3,
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C1(M) = inf
S⊂M

(AreaS)n

[min(vol(M1), vol(M2))]n−1
,

where hypersurface S divides M into two parts: M = M1

∪
M2.

Remark 3.6 There are some typos about this lemma in [11]. For more details we refer reader

to [11].

Denote by
1

2
C0(n) =

√
n− 2

2
+

1

2
+

n− 2√
n(n− 1)

.

Applying the Cauchy inequality, we get

∥∇D∥2 =
∑

i,j,k,l,m

D2
ijkl,m ≥ ∥∇σ∥2.

Then from (3.19), we have

△ σ + C0(n)σ
2 − nσ ≥ 0. (3.20)

Hence, we get

△ σ + C0(n)σ
2 ≥ nσ ≥ 0. (3.21)

Multiplying (3.21) by σα (α ≥ 1), and applying integration by parts, we get

C0(n)

∫
σα+2 ≥ 4α

(α+ 1)2

∫
|▽σ α+1

2 |2 ≥ 1

α

∫
|▽σ−α+1

2 |2. (3.22)

Choosing f = σ
α+1
2 , and applying Lemma 3.5, we obtain

∥σ
α+1
2 ∥ 2n

n−2
≤ k1

(∫
|▽f |2

) 1
2

+ k2∥f∥2

≤ k1C
1
2
0 (n)α

1
2

(∫
σα+2

) 1
2

+ k2∥σ
α+1
2 ∥2

≤ C2(n)[C
− 1

n
1 (n)α

1
2 ∥σ · σα+1∥

1
2
1 + vol(M)−

1
n ∥σ

α+1
2 ∥2]. (3.23)

Now Choosing α+ 1 = n
2 , and applying the Hölder inequality to ∥σ · σ n

2 ∥1, we get

∥σ n
4 ∥ 2n

n−2
≤ C3(n)[C

− 1
n

1 (n) ∥σ∥
1
2
n
2
∥σ n

4 ∥ 2n
n−2

+ vol(M)−
1
n ∥σ∥

n
4
n
2
]. (3.24)

Now we obtain a constant ϵ′(n) > 0 which only depends on n. And for any ϵ′ < ϵ′(n), if

∥σ∥n
2
≤ C

2
n
1 ϵ′, (3.25)

then

∥σ∥ q
2
= ∥σ n

4 ∥
4
n
2n

n−2

≤ C4(n)vol(M)−
4
n2 ∥σ∥n

2
= C4(n)vol(M)−

4
n2 C

2
n
1 ϵ′

≤ C5(n)vol(M)−
4
n2 C

2
n
1 , (3.26)

where q = n
2

2n
n−2 .

For any α ≥ 1, using the Hölder inequality, interpolation inequality and (3.26), we have

∥σ · σα+1∥1 ≤ ∥σ∥ q
2
∥σ

α+1
2 ∥22q

q−2
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≤ C5(n)vol(M)−
4
n2 C

2
n
1 (θ∥σ

α+1
2 ∥ 2n

n−2
+ θ−

n−2
2 ∥σ

α+1
2 ∥2). (3.27)

Substituting (3.27) into (3.23) gives

∥σ
α+1
2 ∥ 2n

n−2
≤C6(n)[α

1
2 vol(M)−

2
n2 θ∥σ

α+1
2 ∥ 2n

n−2
−

α
1
2 vol(M)−

2
n2 θ−

n−2
2 + vol(M)−

1
n ∥σ

α+1
2 ∥2]. (3.28)

Choosing θ = 1
2C6(n)

−1α− 1
2 vol(M)

2
n2 , then we have from (3.28)

∥σ
α+1
2 ∥ 2n

n−2
≤ C7(n)α

n
4 vol(M)−

1
n ∥σ

α+1
2 ∥2. (3.29)

Writing χ = n
n−2 , and choosing α+ 1 = n

2χ
i, i ≥ 0, we have

∥σ∥n
2 χi+1 ≤ C8(n)

1

χi χ
1

χi vol(M)
− 4

n2
1

χi ∥σ∥n
2 χi

≤ C8(n)
1

χi +···+ 1
χ0 χ

1

χi +···+ 1
χ0 vol(M)

− 4
n2 ( 1

χi +···+ 1
χ0 )∥σ∥n

2
.

Let i → ∞. We get σ ≤ C9(n)vol(M)−
2
n ∥σ∥n

2
. If σ < n

3+
√
n−2

, we obtain σ = 0 from Theorem

1.2, and M is a space form. Therefore, when

C9(n)vol(M)−
2
n ∥σ∥n

2
≤ n

3 +
√
n− 2

that is, ∥σ∥n
2
< C10(n)vol(M)

2
n = ϵ′′(n)vol(M)

2
n , we have σ = 0.

Combining condition (3.25), i.e., ∥σ∥n
2
≤ C

2
n
1 ϵ′, we may take ϵ = min(ϵ′(n), ϵ′′(n)). When

∥σ∥n
2
≤ ϵmin(C

2
n
1 , vol(M)

2
n ), it is easy to see that σ = 0. The proof of Theorem 1.3 is complet-

ed. �
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