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Abstract Based on empirical likelihood method and QR decomposition technique, an orthog-

onality empirical likelihood based estimation method for the fixed effects in linear mixed effects

models is proposed. Under some regularity conditions, the proposed empirical log-likelihood

ratio is proved to be asymptotically chi-squared, and then the confidence intervals for the fixed

effects are constructed. The proposed estimation procedure is not affected by the random effects,

and then the resulting estimator is more effective. Some simulations and a real data application

are conducted for further illustrating the performances of the proposed method.
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1. Introduction

Suppose we have a random sample of n subjects with ni observations for the ith subject.

Let Yij and (Xij , Zij) be the response variable and the covariates, respectively, where Xij is

a p-dimensional covariate vector, and Zij is a q-dimensional covariate vector. Then the linear

mixed effects model has the following structure

Yij = XT
ijβ + ZT

ijbi + εij , i = 1, . . . , n, j = 1, . . . , ni, (1.1)

where β = (β1, . . . , βp)
T is a p × 1 vector of fixed effects and bi = (bi1, . . . , biq)

T is a q × 1

vector of random effects of the ith subject, εij is a zero-mean model error. We assume that

{bi, i = 1, . . . , n} and {εij , i = 1, . . . , n, j = 1, . . . , ni} are both independent and identically

distributed random series. Further, for the identifiability of the fixed effects β, we assume that

the expectations of the random effects and errors are all zeros.

When the random effects and model errors are all normally distributed, the maximum like-

lihood estimation and restricted maximum likelihood estimation are popular to use for model

(1.1) (see Hartley and Rao [1], Miller [2] and Jiang [3]). When only moments of the random
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effects and model errors are assumed to exist, the quasi-likelihood method is explored to handle

the inferences of model (1.1) (see Heyde [4], Richardson and Welsh [5] and Jiang [6]). In addi-

tion, Goldstein [7] proposed an iterative generalized least-squares method to estimate the model

parameters in model (1.1). Cui et al. [8] used the method of moments to estimate the model

parameters, and Wu and Zhu [9] proposed an orthogonality estimation method of higher-order

moments of the random effects and errors.

However, in general, the maximum likelihood estimation procedure and the restricted max-

imum likelihood estimation procedure should specify the distributions of random effects and

model errors. Then taking this issue into account, we rely on the empirical likelihood method

as a flexible estimation tool, and proposed a new estimation procedure for the fixed effects in

model (1.1). The empirical likelihood estimation procedure is a more flexible nonparametric es-

timation method, which does not need any assumption about the distributions of random effects

and model errors, and the confidence interval construction of resulting estimator does not need

any asymptotic variance estimation. Compared with the existing empirical likelihood methods

for linear mixed effects models such as Chen et al. [10], our orthogonality based estimation pro-

cedure can individually estimate the fixed effects without any influence of random effects. This

is a positive improvement of Chen et al. [10]. In addition, although Wu and Zhu [9] considered

the estimation for linear mixed effects models by using orthogonality estimation technique, our

empirical likelihood based estimation method is different from the estimating equation based

estimation procedure proposed by Wu and Zhu [9]. Hence, this paper provides a positive result

of the orthogonality based estimation technology, and extends the application literature of the

empirical likelihood method.

Recently, the QR decomposition based estimation technology also has been considered by

some authors. For example, Huang and Zhao [11] considered the orthogonality estimation for lon-

gitudinal partially linear models based on the QR decomposition technique. Zhao and Zhou [12]

proposed a robust empirical likelihood estimation procedure for partially linear models by com-

bining the QR decomposition technology and weighted composite quantile regression method.

The work of this paper is an additional positive result for the QR decomposition based orthog-

onality estimation technology. More works of the orthogonality estimation technology can be

found in Zhao et al. [13], Huang and Zhao [14], Yang and Yang [15], and among others.

The paper is organized as follows. In Section 2, we present the estimation procedure, and

derive some asymptotic properties of the resulting estimator. In Section 3, we study the finite

sample properties of the proposed estimation procedure by some simulations and a real data

analysis. Finally, the technical proofs of all asymptotic results are provided in Section 4.

2. Methodology and main results

We denote Yi = (Yi1, . . . , Yini)
T , Xi = (Xi1, . . . , Xini)

T , Zi = (Zi1, . . . , Zini)
T and εi =

(εi1, . . . , εini)
T . Then from model (1.1), we can get

Yi = Xiβ + Zibi + εi, i = 1, . . . , n. (2.1)
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We further assume Zi is a column full rank matrix. Then, based on the definition of the QR

decomposition of a matrix, the matrix Zi can be decomposed as

Zi = Qi

(
Ri

0

)
,

where Qi is an ni×ni orthogonal matrix, Ri is a q× q triangular matrix, and 0 is an (ni− q)× q

zero matrix. Furthermore, we denote Qi = (qi1, qi2, . . . , qini), Qi1 = (qi1, . . . , qiq) and Qi2 =

(qiq+1, . . . , qini). Then, it is easy to show that Zi = Qi1Ri and QT
i2Qi1 = 0. Hence we have

QT
i2Zi = QT

i2Qi1Ri = 0. By using this information, and left multiplying the both sides of

equation (2.1) by QT
i2 yields

QT
i2Yi = QT

i2Xiβ +QT
i2εi, i = 1, . . . , n. (2.2)

Invoking the definition of Qi2, model (2.2) can be rewritten as

qTijYi = qTijXiβ + qTijεi, i = 1, . . . , n, j = q + 1, . . . , ni. (2.3)

Note that QT
i2Qi2 = Ini−q, where Ini−q is an identity matrix, then we have E{qTijεiεTi qij} = σ2

ε ,

which implies that model (2.3) is homogeneous. Hence, to construct an empirical log-likelihood

ratio function for fixed effects β, invoking model (2.3), we define an auxiliary random vector as

follows

ηi(β) =

ni∑
i=q+1

XT
i qijq

T
ij(Yi −Xiβ), i = 1, . . . , n. (2.4)

Remark 2.1 Although linear mixed effects model contains fixed effects and random effects

simultaneously, we construct model (2.3) in the orthogonal column space of Zi, i = 1, . . . , n, and

make sure the auxiliary random vector (2.4) does not depend on the random effects. Then, based

on (2.4), we can separately make statistical inferences for fixed effects without any affection from

the random effects.

From (2.3), it can be shown that E{ηi(β)} = 0 when β is the true parameter. Hence, we can

construct an empirical log-likelihood ratio function for β by using ηi(β). More specifically, the

empirical log-likelihood ratio for fixed effects β is defined as

R(β) = −2 sup
{ n∑

i=1

log(npi)
∣∣pi ≥ 0,

n∑
i=1

pi = 1,
n∑

i=1

piηi(β) = 0
}
,

where pi means the probability of ηi(β) occurrence. We assume that zero is inside the convex hull

of the point (η1(β), . . . , ηn(β)), then a unique value for R(β) exists. By the Lagrange multiplier

method and using the same arguments as in Owen [16], R(β) can be represented as

R(β) = 2
n∑

i=1

log{1 + λT ηi(β)}, (2.5)

where λ is the Lagrange multiplier, which satisfies

n∑
i=1

ηi(β)

1 + λT ηi(β)
= 0. (2.6)
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Under some regularity conditions, Lemma 4.1 in Section 4 shows that

1√
n

n∑
i=1

ηi(β)
L−→ N(0,Φ),

where Φ = σ2
εΓ, and Γ is defined in the following condition (C4). Based on this result, and using

a regular proof method such as in Owen [16], we can show that R(β) is asymptotically chi-square

distributed when β is the true parameter. For clear exposition of the asymptotic behavior of

R(β), some regularity conditions are listed as follows.

(C1) The random effects bi, i = 1, . . . , n, are independent and identically distributed, and

satisfy E(bi|Xij , Zij) = 0 and E(∥bi∥4) < ∞.

(C2) Let εi = (εi1, . . . , εini) and Vi = E(εiε
T
i ). Then Vi satisfies supi ∥Vi∥ < ∞. In addition,

there exists a positive constant δ such that E(∥εi∥2+δ) < ∞.

(C3) The covariates Xij and Zij satisfy supij E{∥Xij∥4} < ∞ and supij E{∥Zij∥4} < ∞,

i = 1, . . . , n, j = 1, . . . , ni. In addition, the covariate matrices Zi, i = 1, . . . , n, defined in model

(2.1), are all column full rank matrices.

(C4) Denote Pzi = Qi2Q
T
i2, then we assume that

1

n

n∑
i=1

E{XT
i PziXi} −→ Γ,

where Γ is an invertible matrix.

Under these regularity conditions, we give the following theorem that states the asymptotic

distribution of R(β).

Theorem 2.2 Suppose that the conditions (C1)–(C4) hold. Then, if β is the true value of the

parameter, we have

R(β)
L−→ χ2

p,

where “
L−→” means the convergence in distribution, and χ2

p denotes the chi-square distribution

with p degrees of freedom.

As a consequence of the Theorem 2.2, the confidence region for the fixed effects β can be

constructed. More specifically, for any given α with 0 < α < 1, let cα satisfy P (χ2
p ≤ cα) = 1−α,

then the approximate 1− α confidence region for β can be given as

Cα(β) = {β|R(β) ≤ cα}.

Furthermore, we also can maximize −R(β) to obtain the maximum empirical likelihood

estimator β̂ of β. In addition, from the proof procedure of Theorem 2.2 in Section 4, we have

that

R(β) =
{ 1√

n

n∑
i=1

ηi(β)
}T

Φ−1
n

{ 1√
n

n∑
i=1

ηi(β)
}
+ op(1), (2.7)

where Φn = n−1
∑n

i=1 ηi(β)η
T
i (β). Clearly, this is a quadratic form, then maximizing −R(β) to



Orthogonality based empirical likelihood inferences for linear mixed effects models 213

obtain the estimator β̂ is asymptotic equivalent to solving the following estimating equation
n∑

i=1

ηi(β) =
n∑

i=1

ni∑
i=q+1

XT
i qijq

T
ij(Yi −Xiβ) = 0. (2.8)

Note that
∑ni

i=q+1 qijq
T
ij = Qi2Q

T
i2, then (2.8) can be rewritten as

n∑
i=1

XT
i Qi2Q

T
i2(Yi −Xiβ) = 0. (2.9)

Let Γn = n−1
∑n

i=1 X
T
i Qi2Q

T
i2Xi. Then it follows from (2.9) that

β̂ = Γ−1
n

1

n

n∑
i=1

XT
i Qi2Q

T
i2Yi. (2.10)

Obviously, the estimator β̂ defined by (2.10) is the same as the estimator obtained by Wu

and Zhu [9]. Then, using the similar arguments to Wu and Zhu [9], we can prove that, under

some mild regularity conditions, the estimator β̂ obtained by maximizing −R(β) has asymptotic

normality, which is stated in the following Theorem 2.3.

Theorem 2.3 Suppose that the conditions (C1)–(C4) hold. Then, if β is the true value of the

parameter, we have
√
n(β̂ − β)

L−→ N(0,Σ),

where Σ = σ2
εΓ

−1, and Γ is defined in conditions (C4).

We also can construct the confidence region for β based on Theorem 2.3. But the asymptotic

variance Σ should be estimated. Here, we propose a consistent estimation procedure of Σ based

on plug-in method. More specifically, from the proof procedure of Lemma 4.1 in Section 4, we

have that Γn is a consistent estimator of Γ, where Γn is defined by (2.10). In addition, from

the proof procedure of Theorem 2.2 in Section 4, we have that Φn is a consistent estimator

of Φ, where Φn = n−1
∑n

i=1 ηi(β)ηi(β)
T and Φ = σ2

εΓ. Hence invoking Σ = Γ−1ΦΓ−1 and

by the plug-in method, a consistent estimator of Σ is given by Σ̂ = Γ−1
n Φ̂nΓ

−1
n , where Φ̂n =

n−1
∑n

i=1 ηi(β̂)ηi(β̂)
T . In addition, for random effect b, an interesting topic is to estimate the

variance component of b. Invoking the maximum empirical likelihood estimator β̂, and using

the same arguments as in Wu and Zhu [9], can easily obtain the estimation of the moments of

random effect b. Then, we omit the estimation details.

3. Numerical results

In this section, we present some simulation experiments to illustrate the finite sample per-

formance of the proposed method, and consider a real data set analysis for further illustration.

3.1. Simulation studies

We first present some simulation studies to evaluate the performance of the proposed method.

The data are generated from the following model

Yij = XT
ijβ + ZT

ijbi + εij , (3.1)
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where the fixed effects are taken as β = (β1, β2)
T = (1, 2)T . The covariates Xij = (X1ij , X2ij)

T ,

i = 1, . . . , n, j = 1, . . . , ni are independently generated from the normal distribution N(µx,Σx)

with µx = (1, 1)T and Σx =
(

1 0.6
0.6 1

)
. The covariate Zij is taken as Zij = (Z1ij , Z2ij)

T , where

Z1ij and Z2ij , i = 1, . . . , n, j = 1, . . . , ni are independently generated from the normal distribu-

tion N(0, 1). Furthermore, the response Yij is generated according to the model (3.1), where the

model error εij and random effects bi = (b1i, b2i)
T are separately generated from the following

three combinations:

(i) εij ∼ 0.5N(0, 1), b1i ∼ 0.5N(0, 1) and b2i ∼ 0.5N(0, 1);

(ii) εij ∼ 0.5N(0, 1), b1i ∼ 0.5N(0, 1) and b2i ∼ 0.5t(3);

(iii) εij ∼ 0.5N(0, 1), b1i ∼ 0.5t(3) and b2i ∼ 0.5t(3).

To perform the simulation, the sample size is taken as n = 100, 200 and 300, respectively,

and for the ith subject, the number of repeated measurements is randomly drawn from a Poisson

distribution with mean λ = 8.

n = 100 n = 200 n = 300

Model Method Bias SD Bias SD Bias SD

(i) OEL -0.0032 0.0168 -0.0019 0.0113 0.0007 0.0097

OBE 0.0035 0.0172 0.0018 0.0116 -0.0009 0.0097

LSE -0.0041 0.025 0.0021 0.0201 -0.0013 0.0184

(ii) OEL 0.0035 0.0166 0.0016 0.0116 0.0008 0.0104

OBE -0.0039 0.0169 -0.0017 0.0118 0.0009 0.0107

LSE -0.0045 0.0272 0.0023 0.0205 0.0011 0.0196

(iii) OEL -0.0035 0.0169 0.0017 0.0118 -0.0008 0.0103

OBE 0.0038 0.0172 -0.0016 0.0116 0.0008 0.0102

LSE 0.0041 0.0279 -0.0027 0.0203 -0.0009 0.0198

Table 1 The biases and standard deviations of β̂1 by different estimation methods

We first evaluate the efficiencies of the proposed method for the fixed effects estimator β̂. Note

that the response variables follow the normal distribution for case (i), then the maximum likeli-

hood estimation (MLE) procedure is equivalent to the least squares estimation (LSE) method for

case (i). Hence, in this simulation, three estimation methods are compared: the orthogonality

empirical likelihood method (OEL) proposed by this paper, the orthogonality based estimation

procedure (OBE) proposed by Wu and Zhu [9] and the least squares based estimation method

(LSE) defined in Wu et al. [17]. With 1000 simulation runs, Tables 1 and 2 report the averages

of the biases (Bias) and the standard deviations (SD) of β̂1 and β̂2, respectively. From Tables 1

and 2, we can obtain the following observations:

(i) For any given distribution of random effects, when the sample size increases, the biases

obtained by the three methods all decrease uniformly. This implies that the OEL, OBE and LSE

methods all can give a consistent estimator for fixed effects β.
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(ii) The proposed OEL method outperforms the LSE method in terms of standard deviation

(SD). The standard deviations obtained by the OEL method decrease significantly when the

sample size increases. However, the LSE method still gives a relatively larger standard deviation

when the sample size increases. This implies that the estimation procedure for fixed effects,

based on the OEL method, can avoid the influence of random effects.

(iii) For any given n, the results obtained by the OEL method are very similar for different

model designs, which implies that the proposed OEL estimation method is insensitive to the

distribution of random effects.

(iv) The performances of OEL and OBE methods are very similar in terms of bias and

standard deviation. This also implies the estimators obtained by OEL and OBE methods are

asymptotic equivalent, which agrees with the theoretical results presented in Section 2.

n = 100 n = 200 n = 300

Model Method Bias SD Bias SD Bias SD

(i) OEL -0.0048 0.0176 0.0026 0.0121 -0.0018 0.0105

OBE -0.0051 0.0182 -0.0025 0.0126 0.0019 0.0107

LSE -0.0056 0.0344 0.0033 0.0241 0.0019 0.0182

(ii) OEL 0.0047 0.0178 -0.0027 0.0123 0.0018 0.0107

OBE 0.0049 0.0179 -0.0028 0.0126 -0.0019 0.0106

LSE -0.0055 0.0372 0.0035 0.0305 -0.0021 0.0296

(iii) OEL 0.0049 0.0175 -0.0025 0.0126 0.0019 0.0109

OBE -0.0051 0.0178 -0.0026 0.0125 -0.0018 0.0107

LSE 0.0061 0.0379 0.0027 0.0353 -0.0019 0.0293

Table 2 The biases and standard deviations of β̂2 by different estimation methods

n = 100 n = 200 n = 300

Model Method Len CP Len CP Len CP

(i) OEL 0.3578 0.938 0.2409 0.942 0.1334 0.951

NA 0.5043 0.936 0.4156 0.941 0.2238 0.948

(ii) OEL 0.3589 0.934 0.2462 0.941 0.1365 0.950

NA 0.5112 0.934 0.4285 0.942 0.2399 0.948

(iii) OEL 0.3563 0.938 0.2497 0.943 0.1371 0.948

NA 0.5123 0.936 0.4364 0.943 0.2420 0.948

Table 3 The average lengths and coverage probabilities of the 95% confidence intervals for β1

Next, we evaluate the performances of the confidence intervals for fixed effects obtained by the

OEL method proposed by this paper and the normal approximation method (NA) proposed by
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Wu and Zhu [9]. In Tables 3 and 4, we show the average interval lengths (Len) and corresponding

coverage probabilities (CP) of the 95% confidence intervals for β1 and β2, respectively, based on

1000 simulation runs. From Tables 3 and 4, we can see that, although the coverage probabilities

obtained by OEL and NA methods are similar, the confidence intervals based on the OEL method

have uniformly shorter average lengths than those obtained by the NA method. This implies that

the OEL method proposed by this paper performs better than the NA method for confidence

interval construction, which is mainly because the confidence intervals obtained by the OEL

method do not need any asymptotic variance estimation.

n = 100 n = 200 n = 300

Model Method Len CP Len CP Len CP

(i) OEL 0.3682 0.939 0.2510 0.942 0.1469 0.951

NA 0.5149 0.937 0.4175 0.943 0.2217 0.947

(ii) OEL 0.3687 0.938 0.2571 0.944 0.1477 0.949

NA 0.5217 0.938 0.4294 0.942 0.2598 0.948

(iii) OEL 0.3689 0.937 0.2595 0.943 0.1476 0.947

NA 0.5263 0.936 0.4362 0.941 0.2837 0.947

Table 4 The average lengths and coverage probabilities of the 95% confidence intervals for β2

3.2. Application to CD4 Data

We now illustrate the proposed estimation method in this paper through analysis of a data set

from the Multi-Center AIDS Cohort study. The data set contains the human immunodeficiency

virus (HIV) status of 283 homosexual men who were infected with HIV during a follow-up

period between 1984 and 1991. Although the original design was to collect the measurements

for all individuals semiannually, some individuals missed scheduled visits, which resulted in

unequal numbers of measurements. More details about the related design, methods and medical

implications of the Multi-Center AIDS Cohort study have been described by Kaslow et al. [18].

This data set has been used by many authors under different models. For example, Xue and

Zhu [19], Wang et al. [20] and Huang et al. [21] analysis this data by using varying coefficient

models. Fan and Li [22] and Xue and Zhu [23] analyzed this data by using partially linear models.

In addition, He et al. [24] [25] analyzed this data by using semi-varying coefficient models with

fixed effects. In this paper, the objective of the study is to evaluate the effects of the pre-HIV

infection CD4 percentage, the time after HIV infection, and age at HIV infection on the mean

CD4 percentage after infection. Note that the effect of age at HIV infection may vary for different

individuals, then we analyze this data by using the following mixed effects model

Yij = β0 + β1X1ij + β2X2ij + biZij + εij ,
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where Yij is the individual’s CD4 percentage, X1ij is the time after HIV infection, X2ij is the

pre-HIV infection CD4 percentage, and Zij is the individual’s age at HIV infection. β0, β1 and

β2 are fixed effects, and bi is random effect, which reflects the individual variations.

By using the orthogonality empirical likelihood method proposed by this paper, the estimators

and the 95% confidence intervals of fixed effects βk, k = 0, 1, 2 are reported in Table 5. For

comparison, Table 5 also presents the OBE estimators and the normal approximation based

confidence intervals proposed by Wu and Zhu [9]. From Table 5, we can see that β1 < 0, which

implies that the CD4 percentage decreases as the time after HIV infection goes on. β2 > 0

means that the pre-HIV infection CD4 percentage has a positive effect on the individual’s CD4

percentage after HIV infection. Furthermore, the estimator of β2 is 0.3621, which is little than

β2 = 0.74 obtained by Xue and Zhu [23]. This implies that the effect of pre-HIV infection CD4

percentage obtained by Xue and Zhu [23] might be overestimated. In addition, we also can see

that the interval lengths obtained by the proposed orthogonality empirical likelihood method

are uniformly shorter than those obtained by the normal approximation method, which basically

agrees with what was discovered in simulation studies.

Method Fixed effects Estimator Confidence interval Interval length

OEL β0 19.3839 (18.9106, 19.8573) 0.9467

β1 -2.3747 (-2.5747, -2.1830) 0.3917

β2 0.3621 (0.3503, 0.3737) 0.0234

OBE β0 19.3841 (16.7775, 21.9907) 5.2132

β1 -2.3749 (-2.6814, -2.0684) 0.6130

β2 0.3622 (0.3051, 0.4193) 0.1142

Table 5 Application to CD4 data. The estimators and 95% confidence intervals for fixed effects

4. Proofs of Theorems

In this section, we present the technical proofs of Theorems 2.2 and 2.3. For convenience

and simplicity, let c denote a positive constant which may be different values at each appearance

throughout this paper. To facilitate the proof procedure, firstly, we list some lemmas.

Lemma 4.1 Suppose that conditions (C1)–(C4) hold. If β is the true value of the parameter,

then we have
1√
n

n∑
i=1

ηi(β)
L−→ N(0,Φ),

where Φ = σ2
εΓ, and Γ is defined in condition (C4).

Proof From (2.3), a simple calculation yields

ηi(β) =

ni∑
j=q+1

XT
i qij(q

T
ijYi − qTijXiβ) =

ni∑
j=q+1

XT
i qijq

T
ijεi = XT

i Qi2Q
T
i2εi. (4.1)
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Then we have

1√
n

n∑
i=1

ηi(β) =
1√
n

n∑
i=1

XT
i Qi2Q

T
i2εi ≡

1√
n

n∑
i=1

ξi. (4.2)

Invoking E{εi|Xi, Zi} = 0, and some calculations yield E{n−1/2
∑n

i=1 ξi} = 0 and

Var
{ 1√

n

n∑
i=1

ξi

}
=

1

n

n∑
i=1

E{ξiξTi } =
1

n

n∑
i=1

σ2
εE{XT

i Qi2Q
T
i2Xi} −→ σ2

εΓ. (4.3)

Hence, invoking (4.2) and (4.3), and using the central limits theorem, we complete the proof of

this lemma. �

Proof of Theorem 2.2 Invoking the proof of Lemma 4.1, and using the same arguments as in

Owen [16], we can obtain

∥λ∥ = Op(n
−1/2). (4.4)

In addition, from Lemma 4.1, it is easy to show that

max
1≤i≤n

∥ηi(β)∥ = op(n
1/2). (4.5)

Then, invoking (4.4) and (4.5), and using the Taylor expansion to (2.5), we obtain that

R(β) = 2
n∑

i=1

{λT ηi(β)− (λT ηi(β))
2/2}+ op(1). (4.6)

Furthermore, it follows from (2.6) that

n∑
i=1

ηi(β)−
n∑

i=1

ηi(β)ηi(β)
Tλ+

n∑
i=1

ηi(β)[λ
T ηi(β)]

2

1 + λT ηi(β)
= 0. (4.7)

Invoking (4.4) and (4.5), we can prove that

n∑
i=1

[λT ηi(β)]
2 =

n∑
i=1

λT ηi(β) + op(1), (4.8)

λ =
{ n∑

i=1

ηi(β)ηi(β)
T
}−1 n∑

i=1

ηi(β) + op(n
−1/2). (4.9)

Invoking (4.6)–(4.9), and using the same arguments as in Owen [16], we can obtain

R(β) =
{ 1√

n

n∑
i=1

ηi(β)
}T

Φ−1
n

{ 1√
n

n∑
i=1

ηi(β)
}
+ op(1), (4.10)

where Φn = n−1
∑n

i=1 ηi(β)ηi(β)
T . In addition, from the proof of Lemma 4.1, we can obtain

that

Φn =
1

n

n∑
i=1

ηi(β)ηi(β)
T =

1

n

n∑
i=1

ξiξ
T P−→ Φ. (4.11)

Invoking (4.10), (4.11) and Lemma 4.1, we complete the proof of Theorem 2.2. �

Proof of Theorem 2.3 From (2.8), we have that β̂ is the solution of estimating equation
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i=1 ηi(β) = 0. Then a simple calculation yields

0 =
n∑

i=1

ηi(β̂) =
n∑

i=1

XT
i Qi2Q

T
i2(Yi −Xiβ̂)

=
n∑

i=1

XT
i Qi2Q

T
i2(Yi −Xiβ) +

n∑
i=1

XT
i Qi2Q

T
i2Xi(β − β̂). (4.12)

From (4.12), we obtain that

√
n(β̂ − β) = Γ−1

n

1√
n

n∑
t=1

XT
i Qi2Q

T
i2(Yi −Xiβ)

= Γ−1
n

1√
n

n∑
t=1

ηi(β), (4.13)

where Γn is defined by (2.10). In addition, invoking condition (C4), and by the law of large

numbers, we can prove that Γn
P−→ Γ. Hence, invoking (4.13) and Lemma 4.1, and using the

Slutsky’s theorem, we obtain
√
n(β̂ − β)

L−→ N(0,Σ),

where Σ = Γ−1ΦΓ−1 = σ2
εΓ

−1. This completes the proof of Theorem 2.3. �
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