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Abstract The hyper-Wiener index is a kind of extension of the Wiener index, used for predicting

physicochemical properties of organic compounds. The hyper-Wiener indexWW (G) is defined as

WW (G) = 1
2

∑
u,v∈V (G)(dG(u, v)+ d2G(u, v)) with the summation going over all pairs of vertices

in G, dG(u, v) denotes the distance of the two vertices u and v in the graph G. In this paper,

we study the minimum hyper-Wiener indices among all the unicyclic graph with n vertices and

diameter d, and characterize the corresponding extremal graphs.
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1. Introduction

All graphs considered in this paper are finite and simple. Let G be a simple graph of order n

with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). The distance between two vertices

u, v of G, denoted by dG(u, v) or d(u, v), is defined as the minimum length of the paths between

u and v in G. The diameter of a graph G is the maximum distance between any two vertices

of G. For a vertex v ∈ V (G), the degree and the neighborhood of v, are denoted by dG(v)

and NG(v) (or written as d(v) and N(v) for short). A vertex v of degree 1 is called pendant

vertex. An edge e = uv incident with the pendant vertex v is called a pendant edge. Let

PV (G) = {v : dG(v) = 1}. For a subset U of V (G), let G − U be the subgraph of G obtained

from G by deleting the vertices of U and the edges incident with them. Similarly, for a subset E′

of E(G), we denote by G− E′ the subgraph of G obtained from G by deleting the edges of E′.

If U = {v} and E′ = {uv}, the subgraphs G−U and G−E′ will be written as G− v and G−uv

for short, respectively. For any two nonadjacent vertices u and v in graph G, we use G+ uv to

denote the graph obtained from G by adding a new edge uv. Denote by Sn, Pn and Cn the star,

the path and cycle on n vertices, respectively.

The Wiener index of a graph G, denoted by W (G), is one of the oldest topological index,

which was first introduced by Wiener [1] in 1947. It is defined as W (G) =
∑

u,v∈V (G) dG(u, v)
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where the summation goes over all pairs of vertices of G. The hyper-Wiener index of acyclic

graphs was introduced by Milan Randić in 1993 (see [2]). Then Klein et al. [3], extended the

definition for all connected graphs, as a generalization of the Wiener index. Similar to the symbol

W (G) for the Wiener index, the hyper-Wiener index is traditionally denoted by WW (G). The

hyper-Wiener index of a graph G is defined as

WW (G) =
1

2

( ∑
u,v∈V (G)

dG(u, v) +
∑

u,v∈V (G)

d2G(u, v)
)
.

Let S(G) =
∑

u,v∈V (G) d
2
G(u, v). Then

WW (G) =
1

2
W (G) +

1

2
S(G).

We denote DG(u) =
∑

v∈V (G) dG(u, v), DDG(u) =
∑

v∈V (G) d
2
G(u, v), then

W (G) =
1

2

∑
u∈V (G)

DG(u), S(G) =
1

2

∑
u∈V (G)

DDG(u).

Recently, the properties and uses of the hyper-Wiener index have received a lot of attention.

Feng et al. [4] studied hyper-Wiener indices of graphs with given matching number. Feng et

al. [5] researched the hyper-Wiener index of unicyclic graphs. Feng et al. [6] discussed the hyper-

Wiener index of bicyclic graphs. Feng et al. [7] studied the hyper-Wiener index of graphs with

given bipartition. Xu et al. [8] discussed Hyper-Wiener index of graphs with cut edges. Liu et

al. [9] determined trees with the seven smallest and fifteen greatest hyper-Wiener indices. Yu et

al. [10] studied the hyper-Wiener index of trees with given parameters. Gutman [11] obtained

the relation between hyper-Wiener and Wiener index. Cai et al. [12] studied the hyper-Wiener

index of trees of order n with diameter d.

A unicyclic graph is a connected graph with n vertices and n edges. Let Un,d be the set of all

unicyclic graphs order n with diameter d. Obviously, d ≤ n−2. And if d = 1, G ∼= C3. Therefore,

in the following, we assume that 2 ≤ d ≤ n− 2. For the graphs in Un,d, some parameters, such

as the spectral radius, spectral moments, energy, least eigenvalue of adjacency matrix, spectral

radius of signless Laplacian et al., have been extensively studied [13–16]. Especially, in recent

years Xu [17] characterized the smallest Hosoya index of unicyclic graphs with given diameter;

Tan [18] investigated the minimum Wiener index of unicyclic graphs with a fixed diameter.

Motivated by these articles, we will study the the minimum hyper-Wiener indices of unicyclic

in the set Un,d in this paper. Moreover, if d ≡ 0 (mod 2) and 4 ≤ d ≤ n − 3, then the

second minimum hyper-Wiener indices of special unicyclic graphs with girth 3 in the set Un,d

are characterized.

2. Lemmas

In this section, we list some lemmas which will be used to prove our main results.

Lemma 2.1 ([8]) Let H, X and Y be three connected graphs disjoint in pair. Suppose that u, v

are two vertices of H, v1 is a vertex of X, u1 is a vertex of Y . Let G be the graph obtained from
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H, X and Y by identifying v with v1 and u with u1, respectively. Let G1 be the graph obtained

from H,X and Y by identifying three vertices v, v1 and u1, and let G2 be the graph obtained

from H,X and Y by identifying three vertices u, v1 and u1. Then we have

WW (G1) < WW (G) or WW (G2) < WW (G).

Let G1, G2 be two connected graphs with V (G1) ∩ V (G2) = {v}. Denote G1vG2 to be a

graph with V (G1) ∪ V (G2) as its vertex set and E(G1) ∪ E(G2) as its edge set. We have the

following result.

Lemma 2.2 ([8]) LetH be a connected graph, Tm be a tree of orderm, and V (H)∩V (Tm) = {v}.
Then

WW (HvTm) ≥ WW (HvSm),

and equality holds if and only if HvTm
∼= HvSm, where v is the center of star Sm.

Lemma 2.3 ([6]) Let G be a connected graph of order n, v be a pendant vertex of G, and

vw ∈ E(G). Then

(1) W (G) = W (G− v) +DG−v(w) + n− 1;

(2) S(G) = S(G− v) +DDG−v(w) + 2DG−v(w) + n− 1.

By Lemma 2.3 and the definition of hyper-Wiener index, we have the following result.

Corollary 2.4 Let G be a connected graph of order n, v be a pendant vertex of G and

vw ∈ E(G). Then

WW (G) = WW (G− v) +
1

2
DDG−v(w) +

3

2
DG−v(w) + n− 1.

Lemma 2.5 ([7]) Let G and H be two connected graphs with u, v ∈ V (G) and w ∈ V (H). Let

GuH (GvH, respectively) be the graph obtained from G and H by identifying u (v, respectively)

with w. If DG(u) < DG(v) and DDG(u) < DDG(v), then WW (GuH) < WW (GvH).

Lemma 2.6 Let G be a connected graph on n ≥ 2 vertices and uv ∈ E(G). Let G∗
k,l be the

graph obtained from G by attaching two new paths P : uu1u2 · · ·uk and Q : vv1v2 · · · , vl of

length k and l at u, v, respectively, where u1, . . . , uk and v1, . . . , vl are distinct new vertices. Let

G∗
k+1,l−1 = G∗

k,l − vl−1vl + ukvl. If k ≥ l ≥ 1, then

WW (G∗
k,l) ≤ WW (G∗

k+1,l−1).

Proof Let V0 = V (G)\{u, v}, V1 = {wi|wi ∈ V0, d(wi, u) = d(wi, v) − 1}, V2 = {wi|wi ∈
V0, d(wi, u) = d(wi, v) + 1}, V3 = {wi|wi ∈ V0, d(wi, u) = d(wi, v)}, then V0 = V1 ∪ V2 ∪ V3. By

Corollary 2.4,

WW (G∗
k+1,l−1) =WW (G∗

k,l−1) +
1

2
DDG∗

k,l−1
(uk) +

3

2
DG∗

k,l−1
(uk) + n+ k + l − 1

=WW (G∗
k,l−1) +

1

2

( ∑
wi∈V0

d2(wi, uk) +
∑

wi∈V (G∗
k,l−1)\V0

d2(wi, uk)
)
+
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3

2

( ∑
wi∈V0

d(wi, uk) +
∑

wi∈V (G∗
k,l−1)\V0

d(wi, uk)
)
+ n+ k + l − 1

=WW (G∗
k,l−1) +

1

2

∑
wi∈V (G∗

k,l−1)\V0

d2(wi, uk) +
3

2

∑
wi∈V (G∗

k,l−1)\V0

d(wi, uk)+

1

2

( ∑
wi∈V1

d2(wi, uk) +
∑

wi∈V2

d2(wi, uk) +
∑

wi∈V3

d2(wi, uk)
)
+

3

2

( ∑
wi∈V1

d(wi, uk) +
∑

wi∈V2

d(wi, uk) +
∑

wi∈V3

d(wi, uk)
)
+ n+ k + l − 1.

WW (G∗
k,l) =WW (G∗

k,l−1) +
1

2
DDG∗

k,l−1
(vl−1) +

3

2
DG∗

k,l−1
(vl−1) + n+ k + l − 1

=WW (G∗
k,l−1) +

1

2

( ∑
wi∈V0

d2(wi, vl−1) +
∑

wi∈V (G∗
k,l−1)\V0

d2(wi, vl−1)
)
+

3

2

( ∑
wi∈V0

d(wi, vl−1) +
∑

wi∈V (G∗
k,l−1)\V0

d(wi, vl−1)
)
+ n+ k + l − 1

=WW (G∗
k,l−1) +

1

2

∑
wi∈V (G∗

k,l−1)\V0

d2(wi, vl−1) +
3

2

∑
wi∈V (G∗

k,l−1)\V0

d(wi, vl−1)+

1

2

( ∑
wi∈V1

d2(wi, vl−1) +
∑

wi∈V2

d2(wi, vl−1) +
∑

wi∈V3

d2(wi, vl−1)
)
+

3

2

( ∑
wi∈V1

d(wi, vl−1) +
∑

wi∈V2

d(wi, vl−1) +
∑

wi∈V3

d(wi, vl−1)
)
+ n+ k + l − 1.

Obviously, ∑
wi∈V (G∗

k,l−1)\V0

d(wi, uk) =
∑

wi∈V (G∗
k,l−1)\V0

d(wi, vl−1),

∑
wi∈V (G∗

k,l−1)\V0

d2(wi, uk) =
∑

wi∈V (G∗
k,l−1)\V0

d2(wi, vl−1),

∑
wi∈V1

d(wi, uk) ≥
∑

wi∈V1

d(wi, vl−1),
∑

wi∈V1

d2(wi, uk) ≥
∑

wi∈V1

d2(wi, vl−1),

∑
wi∈V2

d(wi, uk) ≥
∑

wi∈V2

d(wi, vl−1),
∑

wi∈V2

d2(wi, uk) ≥
∑

wi∈V2

d2(wi, vl−1),

∑
wi∈V3

d(wi, uk) ≥
∑

wi∈V3

d(wi, vl−1),
∑

wi∈V3

d2(wi, uk) ≥
∑

wi∈V3

d2(wi, vl−1).

So, WW (G∗
k,l) ≤ WW (G∗

k+1,l−1). �

Lemma 2.7 ( [12]) Let P = v0v1 · · · vd be a path of order d+ 1. Then

DP (vj) =
2j2 − 2dj + d2 + d

2
,

and

DDP (vj) =
6j2 + 6dj2 − 6d2j − 6dj + 2d3 + 3d2 + d

6
,
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for 1 ≤ j ≤ d − 1. Moreover, if 1 ≤ i < j ≤ d
2 , DP (vi) > DP (vj), and DDP (vi) > DDP (vj); if

d
2 ≤ i < j ≤ (d− 1), DP (vi) < DP (vj), and DDP (vi) < DDP (vj).

3. Conclusions

In this section, we will give the minimum hyper-Wiener index in the set Un,d (2 ≤ d ≤ n−2).

For any graph G ∈ Un,d, a path with length d of G is called the diametrical path of G, the only

cycle of G is called a unique cycle of G. Note that the number of diametrical paths in Un,d is

possibly more than one. The following propositions present some properties of graphs from Un,d

with the smallest hyper-Wiener index.

Proposition 3.1 Let G ∈ Un,d such that WW (G) is as small as possible. Let Cg be a unique

cycle of G, then there exists a diametrical path Pd+1 of G such that V (Cg) ∩ V (Pd+1) ̸= ∅.

Proof If V (Cg) ∩ V (Pd+1) = ∅, since G is connected, there exists an only path

P = vivkvk+1 · · · vl−1vl

connecting Cg and Pd+1, where vi ∈ V (Cg), vl ∈ V (Pd+1) and vk, . . . , vl−1 ∈ V (G)\(V (Cg) ∪
V (Pd+1)). Let u1, . . . , up ∈ NG(vl)\{vl−1}, p = d(vl)−1, w1, . . . , wq ∈ NG(vi)\{vk}, q = d(vi)−1

and G1 = G− vlu1 − · · · − vlup + viu1 + · · ·+ viup, G2 = G− viw1 − · · · viwq + vlw1 + · · ·+ vlwq.

Thus by Lemma 2.1, WW (G1) < WW (G) or WW (G2) < WW (G), a contradiction. �

Proposition 3.2 Let G ∈ Un,d such that WW (G) is as small as possible. Let Cg be a unique

cycle of G and Pd+1 be a diametrical path of G. Then for v ∈ V (G)\(V (Cg)∪V (Pd+1)), d(v) = 1

and they are adjacent to the same vertex in V (Cg) ∪ V (Pd+1).

Proof By Lemmas 2.1 and 2.2, we have for v ∈ V (G) \ (V (Cg) ∪ V (Pd+1)), d(v) = 1 and they

are adjacent to the same vertex in V (Pd+1). �
By Proposition 3.1, denote

Cg = vkvk+1 · · · vl−1vlvd+2vd+3 · · · vsvk, s ≥ d+ 2,

where

{vk, vk+1, . . . , vl−1, vl} = V (Cg) ∩ V (Pd+1) and {vd+2, vd+3, . . . , vs} = V (Cg) \ V (Pd+1).

Proposition 3.3 LetG ∈ Un,d such thatWW (G) is as small as possible. Let P = v1v2 · · · vkvk+1

· · · vdvd+1 (d(v1) = 1) be the diametrical path and Cg the unique cycle of G. Then

(i) k ̸= l.

(ii) If l = k + 1, then s− d = 2; and if l ≥ k + 2, then s− d = l − k.

Proof (i) If k = l, then s ≥ d + 3 and k ̸= 1, d + 1. Denote u1, . . . , up ∈ NG(vd+2)\{vk}, p =

d(vd+2) − 1. Let G∗ = G − vd+2u1 − · · · − vd+2up + vk+1u1 + · · · + vk+1up, G
∗ ∈ Un,d. Denote

V1 = {vi : vi ∈ Cg\{vk}, d(vi, vd+2) < d(vi, vk) + 1}, V2 = {vj : vj ∈ (
∪

vi∈V1
NG(vi))\V (Cg)}.
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Then for any v ∈ V1

∪
V2,

dG∗(v, vd+2)− dG(v, vd+2) = 2,

d2G∗(v, vd+2)− d2G(v, vd+2) = 4dG(v, vd+2) + 4 ≤ 4dG(v, vk) + 4 = 4dG(v, vk+2)− 4,

dG∗(v, vk+1)− dG(v, vk+1) = −2, d2G∗(v, vk+1)− d2G(v, vk+1) = −4dG(v, vk+1) + 4 < 0,

dG∗(v, vk+2)− dG(v, vk+2) = −2. d2G∗(v, vk+2)− d2G(v, vk+2) = −4dG(v, vk+2) + 4.

The distance between all other vertices is unchanged or reduced. So, WW (G∗) < WW (G),

a contradiction.

(ii) Otherwise, since s− d > l− k, we have s− d ≥ 3. Thus vs−1 exists. Denote u1, . . . , up ∈
NG(vd+2)\{vl}, p = d(vd+2)− 1,

Let G∗ = G− vd+2u1 − · · · − vd+2up + vlu1 + · · ·+ vlup, G
∗ ∈ Un,d. Denote V1 = {vi : vi ∈

Cg\{vk, . . . , vl}, d(vi, vd+2) < d(vi, vl)+1}, V2 = {vj : vj ∈ (
∪

vi∈V1

NG(vi))\V (Cg)}. Then for any

v ∈ V1

∪
V2,

dG∗(v, vd+2)− dG(v, vd+2) = 1,

d2G∗(v, vd+2)− d2G(v, vd+2) = 2dG(v, vd+2) + 1 ≤ 2dG(v, vl) + 1,

dG∗(v, vl)− dG(v, vl) = −1,

d2G∗(v, vl)− d2G(v, vl) = −2dG(v, vl) + 1,

dG∗(vd+3, vl−1)− dG(vd+3, vl−1) = −1,

d2G∗(vd+3, vl−1)− d2G(vd+3, vl−1) = −2dG(vd+3, vl−1) + 1 = −5.

The distance between all other vertices is unchanged or reduced. So, WW (G∗) < WW (G), a

contradiction. �
Let U0 be the unicyclic graph of order d+2 shown in Figure 1. Let U0(n2, . . . , nd, nd+2) be a

graph of order n obtained from U0 by attaching ni pendant vertices to each vi ∈ V (U0)\{v1, vd+1},
respectively, where nd+2 = 0 when k = 1 or k = d. Denote Ũn,d = {U0(n2, . . . , nd, nd+2) :∑d

i=2 ni + nd+2 = n− d− 2} and Ūn,d = {U0(0, . . . , 0, ni, 0, . . . , 0) : ni ≥ 0}.r r p p p r r rLL ��r r r p p p r r
v1 v2 vk vk+1

vd+2

U0

vi vd vd+1

Figure 1 Graph U0

By Lemma 2.1, we have the following result.

Proposition 3.4 Let G ∈ Ũn,d\Ūn,d. Then there is a graph G∗ ∈ Ūn,d such that WW (G∗) <

WW (G).

Let △(n, d) be a graph of order n obtained from a triangle C3 by attaching n−d−2 pendant

edges and a path of length ⌈d
2⌉ at one vertex of the triangle C3, and a path of length ⌈d

2⌉ − 1 to

another vertex of the triangle C3, respectively. Let ∇(n, d) be a graph of order n obtained from



The hyper-Wiener index of unicyclic graph with given diameter 337

a triangle C3 by attaching n − d − 2 pendant edges and a path of length ⌈d
2⌉ − 1 at one vertex

of the triangle C3, and a path of length ⌈d
2⌉ to another vertex of the triangle C3, respectively.

Note that if d = n− 2 or d ≡ 1 (mod 2), then △(n, d) ∼= ∇(n, d).

r r p p p r r ��
r

�����vd+2

@@
r

��
rn− d− 2p p p r r p p p r r

v1 v2 v⌈ d
2
⌉ v⌈ d

2
⌉+1

∇(n, d)

vd vd+1

r r p p p rr
@@ PPPPP

vd+2 r@@
r

��
rp p p rn− d− 2 p p p r r

v1 v2 v⌈ d
2
⌉ v⌈ d

2
⌉+1

△(n, d)

vd vd+1

Figure 2 Graphs ∇(n, d) and △(n, d)

Proposition 3.5 Let ∇(n, d) and △(n, d) be the above two graphs shown in Figure 2. Suppose

that 4 ≤ d ≤ n− 3 and d ≡ 0 (mod)2. Then WW (△(n, d)) < WW (∇(n, d)).

Proof By Corollary 2.4,

WW (△(n, d)) = WW (△(n, d)− vd+1) +
1

2
DD△(n,d)−vd+1

(vd) +
3

2
D△(n,d)−vd+1

(vd) + n− 1,

WW (∇(n, d)) = WW (∇(n, d)− vd+1) +
1

2
DD∇(n,d)−vd+1

(vd) +
3

2
D∇(n,d)−vd+1

(vd) + n− 1.

Since △(n, d)− vd+1
∼= ∇(n, d)− vd+1, so

WW (△(n, d))−WW (∇(n, d)) =
1

2
(DD△(n,d)−vd+1

(vd))−DD∇(n,d)−vd+1
(vd)+

3

2
(D△(n,d)−vd+1

(vd)−D∇(n,d)−vd+1
(vd))

=− 1

2
(d+ 1)(n− d− 2)− 3

2
(n− d− 2)

=− (⌈d
2
⌉+ 2)(n− d− 2) < 0. �

Theorem 3.6 Let G ∈ Un,2. Then WW (G) ≥ WW (△(n, 2), and equality holds if and only if

(i) n = 4, G ∼= C4 or G ∼= △(4, 2); (ii) n = 5, G ∼= C5 or G ∼= △(5, 2); (iii) n ≥ 6, G ∼= △(n, 2).

Proof If d = 2, then G ∼= C4, G ∼= C5 or G ∼= △(n, 2). WW (C4) = WW (△(4, 2)) = 20.

WW (C5) = WW (△(5, 2)) = 40. The results hold for d = 2. �

Theorem 3.7 For any graph G ∈ Ũn,d, 3 ≤ d ≤ n− 2, we have WW (G) ≥ WW (△(n, d)), and

equality holds if and only if G ∼= △(n, d).

Proof Let G ∈ Ũn,d such that the WW (G) is as small as possible. Then by Lemma 2.1,

G ∈ Ūn,d. Let N(vi) ∩ PV (G) = {w1, w2, . . . , wni} if ni > 0, P = v1v2 · · · vkvk+1 · · · vdvd+1 be a

path length d of G and C = vkvk+1vd+2vk the only cycle of G. Since min{d(v1), d(vd+1)} = 1,

we assume d(v1) = 1, k ̸= 1.

Claim 1. If ni > 0, then i ̸= d+ 2.

If i = d + 2, let G1 = G − vd+2w1 − vd+2w2 − · · · − vd+2wni + vkw1 + vkw2 + · · · + vkwni ,

G2 = G−vk−1vk+vd+2vk−1. Then G1, G2 ∈ Ūn,d. By Lemma 2.1, we have WW (G1) < WW (G)

or WW (G2) < WW (G), a contradiction.
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Claim 2. If ni > 0, then i ∈ {k, k + 1}.

Assume to the contrary. According to symmetry, we consider the case vi ∈ V (P )\V (C) and

i > k + 1.

Case 1. If i− 1 > d+ 1− i.

Let G∗ = G− viw1 − viw2 − · · · − viwni + vi−1w1 + vi−1w2 + · · ·+ vi−1wni , G
∗ ∈ Ūn,d.

2(WW (G∗)−WW (G))

= (d− i+ 3− i+ (i− k)− (i− k + 1) + (d− i+ 3)2 − i2 + (i− k)2 − (i− k + 1)2)ni

< (d− i+ 3− i+ (i− k)− (i− k + 1) + (d− i+ 3)2 − i2)ni

= (d+ 1− i− (i− 1)) + (d+ 1− i− (i− 2))(d+ 3)ni < 0,

a contradiction.

Case 2. If i− 1 ≤ d+ 1− i.

Since i− 1 ≤ d+ 1− i, then k < i− 1 ≤ d+ 1− i < d+ 1− k − 1 = d− k.

Let G∗ = G− vkvd+2 + vk+2vd+2, G
∗ ∈ Ūn,d.

2(WW (G)−WW (G∗))

= −(k + 1) + d− k + 1 + ni − (k + 1)2 + (d− k + 1)2 + ni((i− k)2 − (i− k − 1)2

= d− k − k + ni + (d+ 2)(d− k − k) + ni((i− k)2 − (i− k − 1)2

> d− k − k + (d+ 2)(d− k − k) > 0,

a contradiction.

Combining Cases 1 and 2, if G ∈ Ūn,d and WW (G) is as small as possible, then i ∈ {k, k+1}.

Claim 3. k ̸= d.

If k = d, let G∗ = G− vd+1vd+2 + vd−1vd+2, G
∗ ∈ Ūn,d.

2(WW (G∗)−WW (G)) = −d+ 2− d2 + 4 < 0, a contradiction.

Claim 4. k = ⌈d
2⌉.

If k < ⌈d
2⌉, let G∗ = G − vdvd+1 + v1vd+1. If k > ⌈d

2⌉, let G∗ = G − v1v2 + vd+1v1. In all

cases, G∗ ∈ Ūn,d. By Lemma 2.6, WW (G∗) ≤ WW (G), a contradiction.

By Claims 1–4, G ∈ {△(n, d)),∇(n, d)}. By Proposition 3.4, our result holds. �
By Proposition 3.5, we have the following result.

Theorem 3.8 For G ∈ Ūn,d\ △ (n, d) with d ≡ 0 (mod 2) and 4 ≤ d ≤ n − 3, we have

WW (G) ≥ WW (∇(n, d)) and equality holds if and only if G ∼= ∇(n, d).

Let n,m and d be integers with 3 ≤ d ≤ n− 2. For a ≥ b ≥ 0 and a ≥ 1, let Ux
n,2m,d(a, b) be

the unicyclic graph obtained from the cycle C2m = a0a1 · · · a2m−1a0 by attaching a path Pa+1 to

a0 and a path Pb+1 to am, respectively, where a+b = d−m, and attaching l = n−d−m pendent

vertices w1, w2, . . . , wl to the vertex x, where x ∈ {va−1, . . . , v1, a0, a1, . . . , am, u1, u2, . . . , ub−1}.
Denote U i

n,2m,d(a, b) = Ux
n,2m,d(a, b), x ∈ {a0, a1, . . . , a⌊m

2 ⌋}.
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Figure 3 Graphs U i
n,2m,d(a, b)

Proposition 3.9 Let G ∈ Ux
n,2m,d(a, b) such that WW (G) is as small as possible. Then

x /∈ {u1, u2, . . . , ub−1}.

Proof Otherwise, if x = uj (1 ≤ j ≤ b − 1), let G1 = G − xw1 − xw2 − · · · − xwl, G
∗ =

G − xw1 − xw2 − · · · − xwl + amw1 + amw2 + · · · + amwl. By Lemma 2.7, let k1 = a +m + j,

k2 = a+m, d = a+m+ b. So

DG1(uj)−DG1(am) =k21 − dk1 − k22 + dk2 + (m− 1)j

=j(m+ j + a− b) + (m− 1)j > 0,

DDG1(vj)−DDG1(am) =(d+ 1)(k1 − d)k1 + (j + 1)2 + (j + 2)2 + · · ·+

(j +m− 1)2 − ((d+ 1)(k2 − d)k2 + 12 + 22 + · · ·+ (m− 1)2)

=(a+m+ b+ 1)j(m+ j + a− b) + (m− 1)j2 +m(m− 1)j > 0.

By Lemma 2.5, WW (G∗) < WW (G) a contradiction. �

Proposition 3.10 Let G ∈ Ux
n,2m,d(a, b) such that WW (G) is as small as possible. Then

x /∈ {v1, v2, . . . , va−1}.

Proof Otherwise, let x = vi (1 ≤ i ≤ a− 1). If m+ b > a, let G1 = G− xw1 − xw2 − · · · − xwl,

G∗ = G − xw1 − xw2 − · · · − xwl + a0w1 + a0w2 + · · · + a0wl. By Lemma 2.7, let k1 = a − i,

k2 = a, d = a+m+ b. So

DG1(vi)−DG1(a0) =k21 − dk1 − k22 + dk2 + (m− 1)i = −i(2a− i− d) + (m− 1)i

=(m− 1 +m− a+ b+ i)i > 0,

DDG1(vi)−DDG1(a0) =(d+ 1)(k1 − d)k1 + (i+ 1)2 + (i+ 2)2 + · · ·+

(i+m− 1)2 − ((d+ 1)(k2 − d)k2 + 12 + 22 + · · ·+ (m− 1)2)

=(−2a+ d+ i)i(1 + d) + (m− 1)i2 +m(m− 1)i

=(m− a+ b+ i)i(1 + d) + (m− 1)i2 +m(m− 1)i > 0.

By Lemma 2.5, WW (G∗) < WW (G), a contradiction.

Ifm+b ≤ a, letG∗ = G−viw1−viw2−· · ·−viwl+vi−1w1+vi−1w2+· · ·+vi−1wl−vava−1+ubva.

Since dG(wi, aj)− dG∗(wi, aj) = 1 (i = 1, 2, . . . , r, j = m+ 1,m+ 2, . . . , 2m− 1),

2m−1∑
j=m+1

dG(va, aj)−
2m−1∑
j=m+1

dG∗(va, aj)

= (a+ 1 + a+ 2 + · · ·+ a+m− 1)− ((b+ 1) + 1 + (b+ 1) + 2 + · · ·+ (b+ 1) +m− 1))
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= (a− b− 1)(m− 1) > 0.

2m−1∑
j=m+1

d2G(va, aj)−
2m−1∑
j=m+1

d2G∗(va, aj)

= ((a+ 1)2 + (a+ 2)2 + · · ·+ (a+m− 1)2)− (((b+ 1) + 1)2+

((b+ 1) + 2)2 + · · ·+ ((b+ 1) +m− 1))2)

= (a− b− 1)(m− 1)(a+ b+ 1 +m) > 0.

So

2WW (G)− 2WW (G∗) =
∑
i,j

(dG(wi, aj)− dG∗(wi, aj)) +
2m−1∑
j=m+1

dG(va, aj)−

2m−1∑
j=m+1

dG∗(va, aj) +
∑
i,j

(d2G(wi, aj)− d2G∗(wi, aj))+

2m−1∑
j=m+1

d2G(va, aj)−
2m−1∑
j=m+1

d2G∗(va, aj) > 0,

a contradiction.

The result holds. �

Proposition 3.11 Let G ∈ Ux
n,2m,d(a, b) such that WW (G) is as small as possible. If a = b,

then x = a⌊m
2 ⌋. If a > b, then x /∈ {a⌊m

2 ⌋+1, . . . , am}.

Proof Let G1 = G− xw1 − xw2 − · · · − xwl, 0 ≤ i ≤ m,

DG1(ai) = (i+ 1+ i+ 2+ · · ·+ i+ a) + (m− i+ 1+m− i+ 2+ · · ·+m− i+ b) + (1 + 2 +

· · ·+m+ 1 + 2 + · · ·+m− 1) = (a− b)i+mb+ a(a+1)
2 + b(b+1)

2 +m2.

DDG1(ai) = ((i+ 1)2 + (i+ 2)2 + · · ·+ (i+ a)2) + ((m− i+ 1)2 + (m− i+ 2)2 + · · ·+ (m−
i + b)2) + (12 + 22 + · · · +m2 + 12 + 22 + · · · + (m − 1)2) = (a + b)i2 + a(a + 1)i − b(b + 1)i −
2mbi+ bm2 +mb(b+ 1) + a(a+1)(2a+1)

6 + b(b+1)(2b+1)
6 + m(2m2+1)

3 .

DG1(ai)−DG1(aj) = (a− b)(i− j).

DDG1(ai)−DDG1(aj) = ((a+ b)(i+ j) + a(a+ 1)− b(b+ 1)− 2mb)(i− j).

If a = b, ⌊m
2 ⌋ ≥ i > j ≥ 1, DG1(ai) = DG1(aj), DDG1(ai)−DDG1(aj) = 2b(i+j−m)(i−j) <

0, m ≥ i > j ≥ ⌊m
2 ⌋, DG1(ai) = DG1(aj), DDG1(ai)−DDG1(aj) = 2b(i+ j −m)(i− j) > 0. So,

if a = b, then x = a⌊m
2 ⌋.

If a > b,m ≥ i > j ≥ ⌊m
2 ⌋, DG1

(ai) > DG1
(aj), DDG1

(ai) > DDG1(aj). By Lemma 2.5,

x /∈ {a⌊m
2 ⌋+1, . . . , am}. �

By Theorem 3.7, Propositions 3.9–3.11, we have the following result.

Theorem 3.12 Let G be a graph in Un,d (3 ≤ d ≤ n− 2) having the minimum hyper-Wiener

index. Then G ∼= △(n, d) or G ∼= U i
n,2m,d(a, b).
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