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Abstract Kilp and Knauer in (Comm. Algebra, 1992, 20(7), 1841–1856) gave characterizations

of monoids when all generators in category of right S-acts (S is a monoid) satisfy properties

such as freeness, projectivity, strong flatness, Condition (P), principal weak flatness, principal

weak injectivity, weak injectivity, injectivity, divisibility, strong faithfulness and torsion freeness.

Sedaghtjoo in (Semigroup Forum, 2013, 87: 653–662) characterized monoids by some other

properties of generators including weak flatness, Condition (E) and regularity. To our knowledge,

the problem has not been studied for properties mentioned above of (finitely generated, cyclic,

monocyclic, Rees factor) right acts. In this article we answer the question corresponding to these

properties and also fg-weak injectivity.
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1. Introduction

Kilp and Knauer in [1], investigated monoids over which all generators in category of right

S-acts satisfy an special flatness property. Continuing this study Sedaghatjoo in [2], investigated

monoids over which all generators are weakly flat, satisfy Condition (E) or regular. Here we

investigate the corresponding problem for (finitely generated, cyclic, monocyclic, Rees factor)

right acts.

For a monoid S, a nonempty set A is called a right S-act, usually denoted by AS , if S acts on

A unitarily from the right, that is, there exists a mapping A× S −→ A, (a, s) 7−→ as, satisfying

the conditions (as)t = a(st) and a1 = a, for all a ∈ AS and all s, t ∈ S. Throughout this article,

S will always stand for a monoid and AS is a right S-act. For basic definitions and terminology

relating semigroups and acts over monoids, we refer the reader to [3] and [4].

Let C be a category. An object G ∈ C is called a generator in C if the functor MorC(G,−)

is faithful, i.e., for any X,Y ∈ C and any f, g ∈ MorC(X,Y ) with f ̸= g there exists α ∈
MorC(G,X) such that fα ̸= gα.

We recall from [4, II, 3.16] that GS is a generator if and only if there exists an epimorphism

π : GS −→ SS . Hence SS is a generator in Act-S. Also note that if AS is a generator then for
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every right S-act BS such that Hom(B,S) ̸= ∅, AS ⊔ BS is a generator. Thus for every right

ideal I of S, AS ⊔ I is a generator, whenever AS is a generator.

The following lemma will be useful in our main results later.

Lemma 1.1 Let AS be a right S-act such that Hom(AS , SS) ̸= ∅. Then AS is a retract of

S × (S ×AS).

Proof Let AS be a right S-act such that Hom(AS , SS) ̸= ∅ and let f ∈ Hom(AS , SS). Then

by universal property, there exists a homomorphism h : AS −→ S × AS making the following

diagram commutative.
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Diagram 1 (P1)

Therefore, AS is a retract of S × AS . Since Hom(S × AS , SS) ̸= ∅, S × AS is a retract of

S × (S ×AS) and so AS is a retract of S × (S ×AS) as required. �

Theorem 1.2 ([2, Theorem 1.2]) Let S be a monoid and α be an act property which is preserved

under retraction and transferred from coproducts to their components. The following assertions

are equivalent:

(1) All generators satisfy property α;

(2) S ×AS satisfies property α for every right S-act AS ;

(3) A right S-act AS satisfies property α if Hom(AS , SS) ̸= ∅.

Corollary 1.3 ([2, Corollary 1.3]) Let S be a monoid and α be an act property which is

transferred from coproducts to their components. If all generators satisfy property α, then for

each nonempty set I, SI satisfies property α.

In the following we show the condition that property α is transferred from coproduct to their

components in Theorem 1.2 and Corollary 1.3 is redundant and can be omitted. Moreover, we

add a new equivalent statement to statements in Theorem 1.2. In fact the following theorem will

form the main object of our concern in sequel.

Theorem 1.4 Let S be a monoid and α be an act property which is preserved under retraction.

Then the following statements are equivalent:

(1) All generators satisfy property α;

(2) S ×AS satisfies property α for every right S-act AS ;

(3) S ×AS satisfies property α for every generator AS ;

(4) A right S-act AS satisfies property α if Hom(AS , SS) ̸= ∅.
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Proof (1)⇒(2). Since S ×AS is a generator, it is obvious.

(2)⇒ (3). It is obvious.

(3)⇒ (4). Let AS be a right S-act such that Hom(AS , SS) ̸= ∅. Since S ×AS is a generator,

S × (S ×AS) satisfies property α by assumption. Thus by assumption and Lemma 1.1, AS is a

retract of S × (S ×AS), and so the result follows.

(4)⇒ (1). Follows from Theorem 1.2. �

Lemma 1.5 Let S be a monoid and α be an act property. If all generators satisfy property α,

then for every nonempty set I, SI satisfies property α.

Proof Since SI is a generator for every nonempty set I, the result follows. �
For comparison with what follows, we recall the next corollary from [2].

Corollary 1.6 ([2, Corollary 1.4]) Let S be a monoid and α be an act property which is

transferred from coproducts to their components. If all generators satisfy property α, then all

right ideals of S satisfy property α.

In light of Theorem 1.4 and regarding the fact that for every right ideal I of S, Hom(I, S) ̸= ∅,
Corollary 1.6 is extended to the following:

Corollary 1.7 Let S be a monoid and α be an act property which is preserved under retraction

or transferred from coproducts to their components. If all generators satisfy property α, then all

right ideals of S satisfy property α.

We recall from [2] that a right congruence ρ on SS is a right subannihilator congruence if

ρ ≤ kerλs for some s ∈ S.

Theorem 1.8 Let S be a monoid and α be an act property which is preserved under retraction.

If the following three statements

(1) All generators satisfy property α;

(2) SS satisfies property α;

(3) D(S) = (S × S)S satisfies property α;

are equivalent, then the following statements are also equivalent:

(1) All generators satisfy property α;

(2) All finitely generated generators satisfy property α;

(3) All cyclic generators satisfy property α;

(4) All monocyclic generators satisfy property α;

(5) S ×AS satisfies property α for every right S-act AS ;

(6) S ×AS satisfies property α for every finitely generated right S-act AS ;

(7) S ×AS satisfies property α for every cyclic right S-act AS ;

(8) S ×AS satisfies property α for every monocyclic right S-act AS ;

(9) S ×AS satisfies property α for every Rees factor right S-act AS ;

(10) S ×AS satisfies property α for every generator AS ;

(11) S ×AS satisfies property α for every finitely generated generator AS ;
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(12) S ×AS satisfies property α for every cyclic generator AS ;

(13) S ×AS satisfies property α for every monocyclic generator AS ;

(14) A right S-act AS satisfies property α if Hom(AS , SS) ̸= ∅;
(15) A finitely generated right S-act AS satisfies property α if Hom(AS , SS) ̸= ∅;
(16) A cyclic right S-act AS satisfies property α if Hom(AS , SS) ̸= ∅;
(17) A monocyclic right S-act AS satisfies property α if Hom(AS , SS) ̸= ∅;
(18) For every right subannihilator congruence ρ, S/ρ satisfies property α;

(19) (SS)
Isatisfies property α for every nonempty set I;

(20) (SS)
k satisfies property α for every k ∈ N.

Proof Implications (1) ⇔ (5) ⇔ (10) ⇔ (14) are clear from Theorem 1.4.

Implications (5) ⇒ (6) ⇒ (7) ⇒ (8), (10) ⇒ (11) ⇒ (12) ⇒ (13), (7) ⇒ (9), (1) ⇒ (2) ⇒
(3) ⇒ (4), (14) ⇒ (15) ⇒ (16) ⇒ (17), (19) ⇒ (20), (1) ⇒ (19) and (20) ⇒ (1) are obvious.

Also it is easy to prove implications (9) ⇒ (1), (8) ⇒ (1), (4) ⇒ (1), (17) ⇒ (1), (18) ⇒ (1).

Now we show implication (14) ⇒ (18).

Let ρ be a right subannihilator congruence. Thus there exists s ∈ S such that ρ ≤ kerλs.

Define f : S/ρ −→ SS by f([t]ρ) = st. Clearly, f is an S-homomorphism and so Hom(S/ρ, SS) ̸=
∅. Thus S/ρ satisfies property α by assumption. �

It is obvious that all properties under discussion here are preserved under retraction.

2. Monoids over which all generators are torsion free or weakly flat

In this section we begin our investigation with the weakest of flatness property. An act AS

is called torsion free, if for any x, y ∈ AS and any right cancellable element c ∈ S the equality

xc = yc implies x = y (see [4]). We recall from [1] the following theorem.

Theorem 2.1 ([1, Theorem 3.1]) The following conditions on a monoid S are equivalent.

(1) All generators are torsion free;

(2) All right S-acts are torsion free;

(3) Every right cancellable element of S is right invertible.

Lemma 2.2 Any generator contains a generator cyclic subact.

Proof Let AS be a generator. Then there exists an epimorphism π : AS −→ SS . Since π is an

epimorphism, there exists z ∈ AS such that π(z) = 1. Let A⋆ = zS, then π|A⋆ : A⋆ −→ SS is an

epimorphism, and so A⋆ is a generator cyclic subact of AS . �
In the following theorem we give some more equivalent conditions to the conditions in the

above theorem.

Theorem 2.3 For any monoid S the following statements are equivalent:

(1) All generators are torsion free;

(2) All finitely generated generators are torsion free;

(3) All generators generated by at most three elements are torsion free;
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(4) S ×AS is torsion free for every generator AS ;

(5) S ×AS is torsion free for every finitely generated generator AS ;

(6) S ×AS is torsion free for every generator AS generated by at most three elements;

(7) S ×AS is torsion free for every right S-act AS ;

(8) S ×AS is torsion free for every finitely generated right S-act AS ;

(9) S ×AS is torsion free for every right S-act AS generated by at most two elements;

(10) A right S act AS is torsion free if Hom(AS , SS) ̸= ∅;
(11) A finitely generated right S act AS is torsion free if Hom(AS , SS) ̸= ∅;
(12) A right S act AS generated by at most two elements is torsion free if Hom(AS , SS) ̸= ∅;
(13) All right S-acts are torsion free;

(14) Every right cancellable element of S is right invertible.

Proof Implications (1) ⇔ (4) ⇔ (7) ⇔ (10) ⇔ (13) ⇔ (14) are clear from Theorems 1.4 and

2.1.

Implications (1) ⇒ (2) ⇒ (3), (4) ⇒ (5) ⇒ (6), (7) ⇒ (8) ⇒ (9) and (10) ⇒ (11) ⇒ (12) are

obvious.

(9) ⇒ (7). Let AS be a right S-act, (s, x)c = (t, y)c, for s, t ∈ S, x, y ∈ AS and right

cancellable element c ∈ S and let A⋆ = xS ∪ yS. Then S × A⋆
S is torsion free by assumption.

Thus (s, x)c = (t, y)c implies that (s, x) = (t, y) and so S ×AS is torsion free.

(12) ⇒ (10). Let AS be a right S-act such that Hom(AS , SS) ̸= ∅ and suppose xc =

yc, for x, y ∈ AS and right cancellable element c ∈ S. Since Hom(AS , SS) ̸= ∅ there exists

homomorphism f : AS −→ SS . If A⋆ = xS ∪ yS and f⋆ = f |A⋆ , then xc = yc implies x = y by

assumption and so AS is torsion free.

(3) ⇒ (1). Let AS be a generator and xc = yc, for x, y ∈ AS and right cancellable element

c ∈ S. Then there exists z ∈ AS such that π(z) = 1 and A⋆ = xS ∪ yS ∪ zS is a generator, by

Lemma 2.2. Thus A⋆ is torsion free by assumption. Hence xc = yc implies x = y, as required.

(6) ⇒ (1). Let AS be a generator and xc = yc, for x, y ∈ AS and right cancellable element

c ∈ S. If A⋆ = xS ∪ yS ∪ zS is as in the proof of (3) ⇒ (1), then (1, x)c = (1, y)c in S × A⋆.

Clearly, A⋆ is a generator and so S × A⋆ is torsion free by assumption, thus (1, x)c = (1, y)c

implies that (1, x) = (1, y). Hence x = y as required. �
An act AS is called flat if the functor AS ⊗ S− preserves all monomorphisms of left S-

acts. If the functor AS ⊗ S− preserves embeddings of (principal) left ideal into S, then AS is

called (principally) weakly flat [4]. By [2], a right S-act AS is called almost weakly flat if AS is

principally weakly flat and satisfies Condition

(W ′) If as = a′t, and Ss ∩ St ̸= ∅, for a, a′ ∈ AS , s, t ∈ S, then there exist a′′ ∈ AS ,

u ∈ Ss ∩ St such that as = a′t = a′′u.

It is proved in [2, Theorem 3.4] that all generators are weakly flat if and only if all right

S-acts are almost weakly flat.

Lemma 2.4 ([4, III, 11.4]) An act AS is weakly flat if and only if it is principally weakly flat

and satisfies Condition
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(W ) If as = a′t for a, a′ ∈ AS , s, t ∈ S, then there exist a′′ ∈ AS , u ∈ Ss ∩ St, such that

as = a′t = a′′u.

Theorem 2.5 For any monoid S the following statements are equivalent:

(1) All generators are weakly flat;

(2) All finitely generated generators are weakly flat;

(3) All generators, generated by at most three elements are weakly flat;

(4) S ×AS is weakly flat for every generator AS ;

(5) S ×AS is weakly flat for every finitely generated generator AS ;

(6) S ×AS is weakly flat for every generator AS generated by at most three elements;

(7) S ×AS is weakly flat for every right S-act AS ;

(8) S ×AS is weakly flat for every finitely generated right S-act AS ;

(9) S ×AS is weakly flat for every right S-act AS generated by at most two elements;

(10) A right S-act AS is weakly flat if Hom(AS , SS) ̸= ∅;
(11) A finitely generated right S-act AS is weakly flat if Hom(AS , SS) ̸= ∅;
(12) A right S-act AS generated by at most two elements is weakly flat if Hom(AS , SS) ̸= ∅;
(13) All right S-acts are almost weakly flat;

(14) S is regular and for each s, t ∈ S with Ss ∩ St ̸= ϕ there exists w ∈ Ss ∩ St such that

1(kerλs ∨ kerλt)w.

Proof Implications (1) ⇔ (4) ⇔ (7) ⇔ (10) ⇔ (13) ⇔ (14) are obvious from [2, Theorems 3.4,

3.8] and Theorem 1.4.

Implications (7) ⇒ (8) ⇒ (9), (10) ⇒ (11) ⇒ (12), (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) ⇒ (6) are

obvious.

(9) ⇒ (7). Let AS be a right S-act. First we show that S × AS satisfies Condition (W).

Suppose that (l1, a)s = (l2, a
′)t, for a, a′ ∈ AS , l1, l2, s, t ∈ S and let A⋆ = aS∪a′S. Then S×A⋆

S

satisfies Condition (W) and so there exists (l, a′′) ∈ S×A⋆
S ⊆ S×AS and u ∈ Ss∩St, such that

(l1, a)s = (l2, a
′)t = (l, a′′)u. Now let (w1, b)s = (w2, b

′)s, for (w1, b), (w2, b
′) ∈ S × AS , s ∈ S

and let B = bS ∪ b′S. Since S ×BS is principally weakly flat the equality (w1, b)s = (w2, b
′)s in

S × BS implies (w1, b) ⊗ s = (w2, b
′) ⊗ s in (S × BS) ⊗ Ss ⊆ (S × AS) ⊗ Ss, and so S × AS is

principally weakly flat. Thus S ×AS is weakly flat by Lemma 2.4.

(12) ⇒ (10). Let AS be a right S-act such that Hom(AS , SS) ̸= ∅ and suppose as = a′t, for

a, a′ ∈ AS , s, t ∈ S. Since Hom(AS , SS) ̸= ∅, there exists a homomorphism f : AS −→ SS . If

A⋆ = aS ∪a′S and f⋆ = f |A⋆ , then A⋆ satisfies Condition (W) by assumption and so as = a′t in

A⋆ implies that there exists a′′ ∈ A⋆ ⊆ AS and u ∈ Ss∩St such that as = a′t = a′′u, this implies

that AS satisfies Condition (W). Now let as = a′s for a, a′ ∈ AS and s ∈ S. If B = aS ∪ a′S

and g = f |BS
, Then B is principally weakly flat by assumption and so as = a′s in BS implies

a⊗ s = a′ ⊗ s in B ⊗ Ss ⊆ AS ⊗ Ss. Thus AS is principally weakly flat and so AS is weakly flat

by Lemma 2.4.

(3) ⇒ (1). Let AS be a generator and a ⊗ s = a′ ⊗ s in A ⊗ S, for a, a′ ∈ AS , s ∈ S.

Then as = a′s in AS and by Lemma 2.2, there exists a′′ ∈ AS such that π(a′′) = 1 and
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A⋆ = aS ∪ a′S ∪ a′′S is a generator. Thus as = a′s in AS implies that as = a′s in A⋆ and so

a ⊗ s = a′ ⊗ s in A⋆ ⊗ S. Since A⋆ is a generator so A⋆ is weakly flat by assumption. Thus

a ⊗ s = a′ ⊗ s in A⋆
S ⊗ SSs ⊆ AS ⊗ SSs. Hence AS is principally weakly flat. It is easy to see

that AS satisfies Condition (W) and so AS is weakly flat.

(6) ⇒ (4). Let AS be a generator and (l1, a)⊗s = (l2, a
′)⊗s in (S×A)S⊗SS, for l1, l2, s ∈ S

and a, a′ ∈ AS . Let A
⋆ = aS∪a′S∪a′′S be as in the proof of (3) ⇒ (1). Thus S×A⋆ is weakly flat

by assumption. Hence, (l1, a)⊗s = (l2, a
′)⊗s in (S×A⋆)S⊗SSs ⊆ (S×A)S⊗SSs and so S×A

is principally weakly flat. Now we show that S×A satisfies Condition (W). Let (l1, a)s = (l2, a
′)t

in S × A, for l1, l2, s, t ∈ S and a, a′ ∈ AS . Similar to that of (3) ⇒ (1) if A⋆ = aS ∪ a′S ∪ a′′S,

clearly, A⋆ is a generator and so S×A⋆ satisfies Condition (W) by assumption. Thus there exists

(l, a′′) ∈ S × A⋆ ⊆ S × A and u ∈ Ss ∩ St such that (l, a′′)u = (l1, a)s = (l2, a
′)t. Therefore,

S ×AS is weakly flat by Lemma 2.4. �

3. Monoids over which all generators satisfy Condition (E)

In this section we use Theorem 1.4 to give a characterization of monoids for which all gener-

ators satisfy Condition (E).

An S-act AS satisfies Condition (E), if for all a ∈ AS , s, s
′ ∈ S, as = as′ ⇒ (∃a′ ∈ AS)(∃u ∈

S)(a = a′u and us = us′).

We recall that a monoid S is left (right) collapsible if for every s, t ∈ S there exists u ∈ S

such that us = ut (su = tu). Let S be a monoid and x, y ∈ S. Then l(x, y) := {z ∈ S | zx = zy}.
Evidently l(x, y) = ∅ or l(x, y) is a left ideal. If S is a left collapsible monoid, then for every

x, y ∈ S, l(x, y) ̸= ∅, and so l(x, y) is a left ideal.

In [2, Theorem 2.2], some equivalents conditions were obtained for all generators to satisfy

Condition (E). Here we find some more equivalent conditions, as follows:

Theorem 3.1 For any monoid S the following statements are equivalent:

(1) All generators satisfy Condition (E);

(2) All finitely generated generators satisfy Condition (E);

(3) All generators, generated by at most two elements satisfy Condition (E);

(4) S ×AS satisfies Condition (E) for every generator AS ;

(5) S ×AS satisfies Condition (E) for every finitely generated generator AS ;

(6) S×AS satisfies Condition (E) for every generator AS generated by at most two elements;

(7) S ×AS satisfies Condition (E) for every right S-act AS ;

(8) S ×AS satisfies Condition (E) for every finitely generated right S-act AS ;

(9) S ×AS satisfies Condition (E) for every cyclic right S-act AS ;

(10) S ×AS satisfies Condition (E) for every monocyclic right S-act AS ;

(11) A right S-act AS satisfies Condition (E) if Hom(AS , SS) ̸= ∅;
(12) A finitely generated right S-act AS satisfies Condition (E) if Hom(AS , SS) ̸= ∅;
(13) A cyclic right S-act AS satisfies Condition (E) if Hom(AS , SS) ̸= ∅;
(14) A monocyclic right S-act AS satisfies Condition (E) if Hom(AS , SS) ̸= ∅;
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(15) (∀x, y ∈ S)(l(x, y) = ∅ ∨ (∃e ∈ E(S), ρ(x, y) = kerλe));

(16) For every right subannihilator congruence ρ, S/ρ satisfies Condition (E);

(17) (∀x, y ∈ S)(l(x, y) = ∅ ∨ S/ρ(x, y) satisfies Condition (E));

(18) (∀x, y ∈ S)(l(x, y) = ∅ ∨ (∃u ∈ S, ux = uy ∧ 1 ρ(x, y) u));

(19) (∀x, y, t ∈ S)(l(tx, ty) = ∅ ∨ S/ρ(tx, ty) satisfies Condition (E));

(20) (∀x, y, t ∈ S)(l(tx, ty) = ∅ ∨ (∃u ∈ S, t ρ(tx, ty) u ∧ ux = uy));

(21) (∀x, y ∈ S)(l(x, y) = ∅ ∨ (∃e ∈ E(S), ex = ey ∧ 1 ρ(x, y) e)).

Proof Implications (1) ⇔ (4) ⇔ (7) ⇔ (11) ⇔ (15) ⇔ (16) ⇔ (17) are clear from Theorem 1.4

and [2, Theorem 2.2].

Implications (1) ⇒ (2) ⇒ (3), (4) ⇒ (5) ⇒ (6), (7) ⇒ (8) ⇒ (9) ⇒ (10), (11) ⇒ (12) ⇒
(13) ⇒ (14), (17) ⇒ (19) are obvious.

(3) ⇒ (1). Let AS be a generator and as = at, for a ∈ AS and s, t ∈ S. Hence by Lemma

2.2, there exists a′ ∈ AS such that π(a′) = 1 and A⋆ = aS ∪a′S is a generator. Thus A⋆ satisfies

Condition (E) by assumption. Hence as = at in A⋆ implies the existence of a′′ ∈ A⋆ ⊆ A and

u ∈ S such that a = a′′u and us = ut. Therefore, AS satisfies Condition (E), as required.

(6) ⇒ (4). Let AS be a generator and (l, a)s = (l, a)t, for a ∈ AS and l, s, t ∈ S. If

A⋆ = aS ∪ a′S is as in the proof of (3) ⇒ (1), then A⋆ is a generator and so S × A⋆ satisfies

Condition (E) by assumption. Thus there exist (l′, a′′) ∈ S × A⋆ ⊆ S × A and u ∈ S such that

(l, a) = (l′, a′′)u and us = ut. Therefore, S ×A satisfies Condition (E).

(17) ⇒ (18). Let x, y ∈ S such that l(x, y) ̸= ∅. Then S/ρ(x, y) satisfies Condition (E) and

so [1]ρx = [1]ρy implies that there exist α, u1 ∈ S, such that [1]ρ = [α]ρu1 and u1x = u1y. If

αu1 = u, then [1]ρ = [u]ρ and ux = uy. Hence 1ρ(x, y)u and ux = uy.

(18) ⇒ (20). Let x, y, t ∈ S such that l(tx, ty) ̸= ∅. Then by assumption there exists u1 ∈ S

such that u1tx = u1ty and 1ρ(tx, ty)u1. Thus tρ(tx, ty)u1t and u1tx = u1ty. If u1t = u , then

tρ(tx, ty)u and ux = uy as required.

(19) ⇒ (20). Let x, y, t ∈ S such that l(tx, ty) ̸= ∅, and suppose ρ(tx, ty) = ρ. Since

[t]ρx = [t]ρy and S/ρ satisfies Condition (E), there exist α, u1 ∈ S, such that [t]ρ = [α]ρu1 and

u1x = u1y. If αu1 = u, then tρ(tx, ty)u and ux = uy.

(14) ⇒ (17). Let x, y ∈ S such that l(x, y) ̸= ∅. Then there exists z ∈ S such that zx = zy

and so ρ(x, y) ≤ kerλz. Define the mapping f : S/ρ(x, y) −→ SS by f([t]ρ(x,y)) = zt, for t ∈ S.

Clearly, f is well defined and is an S-homomorphism. Therefore, Hom(S/ρ(x, y), SS) ̸= ∅ and so

S/ρ(x, y) satisfies Condition (E) by assumption, as required.

(20) ⇒ (21). Let x, y ∈ S such that l(x, y) ̸= ∅. If t = 1, then there exists u ∈ S such

that ux = uy and 1ρ(x, y)u. If ρ = ρ(x, y), then (x, y) ∈ kerλu implies that ρ ⊆ kerλu. Since

1ρu we have (1, u) ∈ kerλu, that is, u = u2 and so u is an idempotent. Let u = e. Since

(x, y) ∈ ρ ⊆ kerλe implies that ex = ey and 1ρ(x, y)e, we are done.

(21) ⇒ (15). Let x, y ∈ S such that l(x, y) ̸= ∅ and let ρ = ρ(x, y). By assumption there

exists e ∈ E(S) such that ex = ey and 1ρe. Then ex = ey implies that ρ ⊆ kerλe. Let l1, l2 ∈ S,

such that (l1, l2) ∈ kerλe. Then el1 = el2, and since 1ρe we have l1ρel1, l2ρel2 and so l1ρl2.



On characterization of monoids by properties of generators 375

Thus, kerλe ⊆ ρ, and so kerλe = ρ, as required.

(10) ⇒ (17). Let x, y ∈ S such that l(x, y) ̸= ∅. Then there exists z ∈ S such that zx = zy

and so ρ(x, y) ≤ kerλz. Suppose ρ(x, y) = ρ and let l1, l2 ∈ S such that l1ρl2, then zl1 = zl2.

Thus (z, [1]ρ)l1 = (z, [1]ρ)l2 in S×S/ρ. The last equality implies by assumption that there exist

(w, [a]ρ) ∈ S × S/ρ and v ∈ S such that (z, [1]ρ) = (w, [a]ρ)v, vl1 = vl2. If av = u, then we have

1ρu, and ul1 = ul2. Thus S/ρ(x, y) satisfies Condition (E) by [4, III, 14.8]. �

Lemma 3.2 ([2, Corollary 2.6]) Let S be a monoid over which all generators satisfy Condition

(E). Then for each pair (x, y) in S × S, l(x, y) = ∅ or l(x, y) = S or xS ∪ yS = S.

The following lemma will be used in our next result.

Lemma 3.3 Suppose for every x, y ∈ S, (l(x, y) = ∅ ∨ l(x, y) = S ∨ xS ∪ yS = S). If x′ ∈ S

is the right inverse of x, then it is also the left inverse of x.

Proof Let x′ ∈ S be the right inverse of x. Thus xx′ = 1 and so x′x ∈ E(S). If E(S) = {1},
then xx′ = 1 = x′x. Now suppose that |E(S)| ≥ 2. Then there exists e ∈ E(S) \ {1}, and so

ex.x′ = ex.x′e, which implies that ex ∈ l(x′, x′e). Therefore, l(x′, x′e) ̸= ∅, and so l(x′, x′e) = S

or x′S∪x′eS = S. If l(x′, x′e) = S, then x′ = x′e. Thus xx′ = xx′e and so e = 1, a contradiction.

Therefore, x′S ∪ x′eS = S which implies that 1 ∈ x′eS or 1 ∈ x′S. If 1 ∈ x′eS, then there exists

l ∈ S such that 1 = x′el and so x′x = 1. If 1 ∈ x′S, then there exists t ∈ S such that 1 = x′t.

Hence x = xx′t = 1t = t, and so xx′ = 1 = x′x. �

Lemma 3.4 ([1, Corollary 1.5]) If S is commutative or if the identity 1 of S is externally

adjointed, then all cyclic xS generators are isomorphic to SS .

Corollary 3.5 Let S be a monoid over which all generators satisfy Condition (E). Then all

cyclic generators are isomorphic to SS .

Proof Let aS be a cyclic generator. Then there exists an epimorphism π : aS −→ SS . Let

π(a) = t. Then there exists t′′ ∈ S such that tt′′ = 1. Define the mapping φ : aS −→ SS by

φ(as) = s, s ∈ S. If as = at′ for s, t′ ∈ S, then by Lemmas 3.2 and 3.3, t′′t = 1 and so s = t′.

Hence φ is well defined and so aS ∼= S. �

4. Monoids over which all generators are strongly faithful

Kilp and Knauer in [1] showed that over a monoid S all generators are strongly faithful if

and only if S is left cancellative. Now in the following corollary we add some more equivalent

conditions for all generators to be strongly faithful.

Lemma 4.1 Let S be a monoid. Then the following statements are equivalent:

(1) All generators are strongly faithful;

(2) D(S) = (S × S)S is strongly faithful;

(3) SS is strongly faithful;
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(4) SS is left cancellative;

(5) (∀x, y ∈ S) (l(x, y) = ∅ ∨ l(x, y) = S).

Proof (1) ⇒ (3). It is obvious.

(3) ⇒ (1). Let AS be a generator and as = at, for a ∈ AS , s, t ∈ S. Then there exists an

epimorphism π : AS −→ SS and also π(a)s = π(a)t. Since SS is strongly faithful, we have s = t,

that is, AS is strongly faithful.

(1) ⇒ (2). Since all generators are strongly faithful, S × AS is strongly faithful for every

right S-act AS and so D(S) = (S × S)S is strongly faithful.

(2) ⇒ (3). Let as = at, for a, s, t ∈ S. Then (a, a)s = (a, a)t and that D(S) is strongly

faithful, we have s = t, that is SS , is strongly faithful.

(3) ⇒ (2). It is obvious.

(4) ⇒ (5). Let x, y ∈ S such that l(x, y) ̸= ∅. Then there exists z ∈ S such that zx = zy.

Since S is left cancellative, x = y and so l(x, y) = S.

(5) ⇒ (4). Let x, y, z ∈ S such that zx = zy. Thus z ∈ l(x, y), that is, l(x, y) ̸= ∅ and so

l(x, y) = S by assumption. Thus x = y and so S is left cancellative as required.

(1) ⇔ (4). It follows from [1, Proposition 1.3]. �

Corollary 4.2 Let S be a monoid. Then all the statements in Lemma 4.1 and Theorem 1.8

are equivalent when the property α is strongly faithful.

5. Monoids over which all generators are regular

Author in [2] gave three equivalent conditions under which all generators are regular. Now

in Theorem 5.1, we give more equivalent conditions to these conditions. We recall from [4] that

an element a ∈ AS is called act-regular if there exists a homomorphism f : aS −→ S such that

af(a) = a, and AS is called a regular act if every a ∈ AS is an act-regular element. By [4, III,

19.3] it is equivalent to saying that every cyclic subact of A is projective.

Theorem 5.1 For any monoid S the following statements are equivalent:

(1) All generators are regular;

(2) All finitely generated generators are regular;

(3) All generators generated by at most two elements are regular;

(4) S ×AS is regular for every right S-act AS ;

(5) S ×AS is regular for every generator AS ;

(6) S ×AS is regular for every finitely generated generator AS ;

(7) S ×AS is regular for every generator AS generated by at most two elements;

(8) S ×AS is regular for every finitely generated right S-act AS ;

(9) S ×AS is regular for every cyclic right S-act AS ;

(10) A right S-act AS is regular if Hom(AS , SS) ̸= ∅;
(11) A finitely generated right S-act AS is regular if Hom(AS , SS) ̸= ∅;
(12) A cyclic right S-act AS is regular if Hom(AS , SS) ̸= ∅;
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(13) For every right subannihilator congruence ρ, S/ρ is regular.

(14) For every right subannihilator congruence ρ and for every s ∈ S there exists an idem-

potent e ∈ S such that ρs = kerλe.

Proof Implications (1) ⇔ (4) ⇔ (5) ⇔ (10) ⇔ (14) are clear from Theorem 1.4 and [4, III,

19.5].

Implications (1) ⇒ (2) ⇒ (3), (5) ⇒ (6) ⇒ (7), (4) ⇒ (8) ⇒ (9) and (10) ⇒ (11) ⇒ (12) are

obvious.

(3) ⇒ (1). Let AS be a generator. We show that aS is a projective right S-act for a ∈ AS .

By Lemma 2.2, there exists a′ ∈ AS such that π(a′) = 1 and A⋆ = aS ∪ a′S is a generator

generated by two elements. Thus A⋆ is regular by assumption and so aS is projective.

(7) ⇒ (5). Let AS be a generator and (s, a)S be a cyclic subact of S × A. If A⋆ = aS ∪ a′S

similar to that of (3) ⇒ (1), A⋆ is a generator generated by two elements. Thus S×A⋆ is regular

by assumption and so (s, a)S is projective. Hence S ×A is regular.

(12) ⇒ (13). Let ρ be a right subannihilator congruence. Then Hom(S/ρ, SS) ̸= ∅ and so

S/ρ is regular by assumption.

(13) ⇒ (1). Let AS be a generator and a ∈ AS . Since kerλa is a right subannihilator

congruence, aS ∼= S/kerλa is regular and so it is projective. Thus AS is regular as required.

(9) ⇒ (10). Let AS be a right S-act such that Hom(AS , SS) ̸= ∅. Let a ∈ AS and suppose

f : AS −→ SS is an S-homomorphism. Consider (f(a), a) ∈ S × aS. Since S × aS is regular

by assumption, (f(a), a)S is projective by [4, III, 19.3]. Hence by [4, III, 17.9] there exists

an idempotent e ∈ E(S) such that kerλ(f(a),a) = kerλe. So we have kerλe = kerλ(f(a),a) =

kerλf(a) ∩ kerλa ⊆ kerλa. It can easily be seen that kerλa ⊆ kerλe and so S/kerλa
∼= aS is

projective by [4, III, 17.9]. Hence AS is regular. �

6. Monoids over which all generators are divisible, principally weakly
injective, fg-weakly injective, weakly injective, injective or completely
reducible

We recall from [4] that an act AS is called divisible if Ac = A for any left cancellable element

c ∈ S. Kilp and Knauer in [1] showed that over a monoid S all generators are divisible if and

only if every left cancellable element is left invertible. In Corollary 6.2 we will give some more

equivalent conditions when all generators are divisible. As an immediate consequence of [4, III,

2.2], [5, Proposition 6.1] and [1, Theorem 4.1] we have the following lemma.

Lemma 6.1 Let S be a monoid. Then the following statements are equivalent:

(1) All generators are divisible;

(2) D(S) = (S × S)S is divisible;

(3) SS is divisible;

(4) All right S-acts are divisible;

(5) Every left cancellable element is left invertible.
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Corollary 6.2 Let S be a monoid and the property α be divisible. Then all the statements

in Lemma 6.1 and Theorem 1.8 are equivalent.

Now we continue our investigation over monoids when all generators are (principally, fg-

weakly or weakly) injective.

Theorem 6.3 For any monoid S the following statements are equivalent:

(1) All generators are principally weakly injective;

(2) S ×AS is principally weakly injective for every generator AS ;

(3) S ×AS is principally weakly injective for every right S-act AS ;

(4) S ×AS is principally weakly injective for every finitely generated right S-act AS ;

(5) S ×AS is principally weakly injective for every cyclic right S-act AS ;

(6) A right S-act AS is principally weakly injective if Hom(AS , SS) ̸= ∅;
(7) A finitely generated right S-act AS is principally weakly injective if Hom(AS , SS) ̸= ∅;
(8) A cyclic right S-act AS is principally weakly injective if Hom(AS , SS) ̸= ∅;
(9) For every right subannihilator congruence ρ, S/ρ is principally weakly injective;

(10) All right S-acts are principally weakly injective;

(11) S is regular.

Proof Implications (1) ⇔ (2) ⇔ (3) ⇔ (6) are clear from Theorem 1.4 and (1) ⇔ (10) ⇔ (11)

from [1, Corollary 4.3].

Implications (3) ⇒ (4) ⇒ (5), (6) ⇒ (7) ⇒ (8), (10) ⇒ (6) are obvious.

(8) ⇒ (9). Let ρ be a right subannihilator congruence. Thus Hom(S/ρ, S) ̸= ∅, and so S/ρ

is principally weakly injective.

(9) ⇒ (10). For any s ∈ S, kerλs is a right subannihilator congruence. So by assumption

S/kerλs is principally weakly injective for every s ∈ S. Since S/kerλs
∼= sS, thus all principal

right ideals are principally weakly injective, hence all right S-acts are principally weakly injective

by [4, IV, 1.6].

(5) ⇒ (10). Let AS be a right S-act. We show that AS is principally weakly injective. Let

kerλs ≤ kerλa, for a ∈ AS , s ∈ S. Consider (s, a) ∈ S × aS. Since kerλ(s,a) = kerλs ∩ kerλa =

kerλs. Thus kerλs ≤ kerλ(s,a). By assumption S × aS is principally weakly injective. Thus by

[4, III, 3.2], there exists (w, al) ∈ S × aS such that (s, a) = (w, al)s. Hence a = (al)s and again

by [4, III, 3.2], AS is principally weakly injective as required. �

Theorem 6.4 For any monoid S the following statements are equivalent:

(1) All generators are fg-weakly injective;

(2) S ×AS is fg-weakly injective for every right S-act AS ;

(3) S ×AS is fg-weakly injective for every generator AS ;

(4) S ×AS is fg-weakly injective for every finitely generated right S-act AS ;

(5) A right S-act AS is fg-weakly injective if Hom(AS , SS) ̸= ∅;
(6) A finitely generated right S-act AS is fg-weakly injective if Hom(AS , SS) ̸= ∅;
(7) All right S-acts are fg-weakly injective.
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(8) S is regular and all finitely generated right ideals of S are principal.

Proof Implications (1) ⇔ (2) ⇔ (3) ⇔ (5) are clear from Theorem 1.4.

Implications (3) ⇒ (4), (5) ⇒ (6), (7) ⇒ (5) and (7) ⇒ (1) are obvious.

(4) ⇒ (7). Let AS be a finitely generated right S-act. At first we show that AS is fg-

weakly injective. Let KS be a finitely generated right ideal of S and f : KS −→ AS be an

S-homomorphism. Define f∗ : KS −→ S × AS by f∗(k) = (k, f(k)). Then clearly, f∗ is an S-

homomorphism. Since S×AS is fg-weakly injective by [4, III, 4.2], there exists (w, z) ∈ S×AS

such that f∗(k) = (w, z)k, for every k ∈ KS . Hence f∗(k) = (k, f(k)) = (w, z)k = (wk, zk), for

every k ∈ KS . Thus f(k) = zk, for every k ∈ KS , and again by [4, III, 4.2], AS is fg-weakly

injective. Consequently, all finitely generated right ideals are fg-weakly injective. Hence all right

S-acts are fg-weakly injective by [4, IV, 2.17].

(6) ⇒ (7). Let KS be a finitely generated right ideal of S. Then Hom(KS , SS) ̸= ∅ and so

KS is fg-weakly injective by assumption. Thus all finitely generated right ideals are fg-weakly

injective and so by [4, IV, 2.17] all right S-acts are fg-weakly injective.

(7) ⇔ (8). By [4, IV, 2.17]. �
We recall from [6] that, an element e ∈ S is called special idempotent if e2 = e and for any

congruence ≡ on SS there exists c ∈ eS such that ce ≡ e and a ≡ b implies ca ≡ cb for any

a, b ∈ S. From Theorem 1.4, [1, Corollaries 4.4, 4.5], we have the following theorems.

Theorem 6.5 For any monoid S the following statements are equivalent:

(1) All generators are weakly injective;

(2) S ×AS is weakly injective for every right S-act AS ;

(3) S ×AS is weakly injective for every generator AS ;

(4) A right S-act AS is weakly injective if Hom(AS , SS) ̸= ∅;
(5) All right S-acts are weakly injective;

(6) S is regular and all right ideals of S are principal.

Theorem 6.6 For any monoid S the following statements are equivalent:

(1) All generators are injective;

(2) S ×AS is injective for every right S-act AS ;

(3) S ×AS is injective for every generator AS ;

(4) A right S-act AS is injective if Hom(AS , SS) ̸= ∅;
(5) All right S-acts are injective;

(6) S contains a left zero and all right ideals of S are generated by special idempotents.

Theorem 6.7 ([1, Theorem 2.7]) All generators are completely reducible if and only if S is a

group.

Lemma 6.8 Let S be a monoid. Then the following statements are equivalent:

(1) All generators are completely reducible;

(2) D(S) = (S × S)S is completely reducible;
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(3) SS is completely reducible;

(4) All right S-acts are completely reducible;

(5) S is group.

Proof Implications (4) ⇔ (5) and (1) ⇔ (5) are clear from [4, I, 5.34] and Theorem 6.7.

(1) ⇒ (3). It is obvious.

(3) ⇒ (1). By [4, I, 5.33] and Theorem 6.7 the result follows.

(1) ⇒ (2). Since S×A is a generator for every right S-act AS , by assumption it is completely

reducible. Hence D(S) = (S × S)S is completely reducible and the result follows.

(2) ⇒ (1). Since D(S) = (S × S)S is completely reducible, by definition D(S) = (S × S)S =∪̇
i∈IBi, where Bi’s are disjoint simple subacts of D(S). Let s ∈ S. Since (1, s) ∈ D(S), there

exists i0 ∈ I such that (1, s) ∈ Bi0 . Since (1, s)S ≤ Bi0 and Bi0 is simple, thus (1, s)S = Bi0 . On

the other hand (s, s2) ∈ D(S) =
∪̇

i∈IBi, and so there exists j0 ∈ I such that (s, s2) ∈ Bj0 . Since

(s, s2)S ≤ Bj0 and Bj0 is simple thus (s, s2)S = Bj0 . Therefore, (s, s2) ∈ Bi0 ∩ Bj0 . Since Bi’s

(i ∈ I) are disjoint thus i0 = j0 and so (1, s)S = (s, s2)S. Therefore, (1, s) ∈ (1, s)S = (s, s2)S

implies that there exists x ∈ S such that (1, s) = (s, s2)x = (sx, s2x). Hence sx = 1. Thus

sS = S and so S is a group. Hence by Theorem 6.7, the result follows. �
Now in the following corollary we add some more equivalent conditions when all generators

are completely reducible.

Corollary 6.9 Let S be a monoid and α be the property completely reducible. Then all the

statements in Lemma 6.8 and Theorem 1.8 are equivalent.
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