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Abstract In this paper, we determine the differential of the Bers projection at the origin in the

F (p, s)-Teichmüller space.
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1. Introduction

This is a continuous work of our previous paper [1], where we introduced the F (p, s)-

Teichmüller space and investigated its Schwarzian derivative model and pre-logarithmic deriva-

tive model. In particular, we proved that the Bers projection is holomorphic. In this paper, we

shall determine the differential of Bers projection at the origin in the F (p, s)-Teichmüller space.

We start with some notations and definitions.

Let ∆ = {z : |z| < 1} be the unit disk in the complex plane C and ∆∗ = {z : |z| > 1} be the

outside of the unit disk. For any a ∈ ∆, set φa(z) =
z−a
1−az , z ∈ ∆. For p ≥ 2, and s ≥ 0, the

space F (p, s) consists of all holomorphic functions f on the unit disk ∆ with the following finite

norm

∥f∥pFp,s
= sup

a∈∆

x
∆

|f ′(z)|p(1− |z|2)p−2(1− |φa(z)|2)sdxdy < ∞. (1.1)

This space F (p, s), as a special case of F (p, q, s) which is introduced by Zhao [2], is a Banach

space.

An orientation preserving homeomorphism f from domain Ω onto f(Ω) is quasiconformal if

f has locally L2 integrable distributional derivative on Ω and satisfies the following equation

fz = µ(z)fz,

for some measurable functions µ with ∥µ∥∞ < 1. Here we use the notations

fz =
1

2
(
∂f

∂x
+ i

∂f

∂y
), fz =

1

2
(
∂f

∂x
− i

∂f

∂y
),

and the function µ is called the complex dilatation of f (see [3] for more details).

The universal Teichmüller space T is defined as T = M(∆∗)/ ∼, where M(∆∗) denotes the

unit ball of the Banach space L∞(∆∗) of bounded measurable functions on ∆∗. Let fµ be the
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unique quasiconformal mapping whose complex dilatation is µ in ∆∗ and zero in ∆, normalized

by

fµ(0) = f ′
µ(0)− 1 = f ′′

µ (0) = 0.

We say that two Beltrami coefficients µ1 and µ2 inM(∆∗) are Teichmüller equivalent and denoted

by µ1 ∼ µ2 if fµ1(∆) = fµ2(∆) (see [3–5] for more details).

Let s > 0. A positive measure λ defined in a simply connected domain Ω is called s-Carleson

measure if

∥λ∥c = sup{λ(Ω ∩D(z, r))

rs
: z ∈ ∂Ω, 0 < r < ∞} < ∞, (1.2)

where D(z, r) denotes a disk with center z and radius r. 1-Carleson measure is the classical

Carleson measure. We denote by CMs(Ω) the set of all s-Carleson measures on Ω.

Here and in what follows, we assume that 2 ≤ p and 0 < s < 2. Denote by Mp,s(∆
∗)

the Banach space of all essentially bounded measurable functions µ each of which induces an

s-Carleson measure

λµ(z) :=
∥µ(z)|p

(|z| − 1)2−s
dxdy ∈ CMs(∆

∗).

The norm of µ ∈ Mp,s(∆
∗) is defined as

∥ µ ∥s=∥ µ ∥∞ +∥λµ∥1/pC,s, (1.3)

where ∥λµ∥C,s is the s-Carleson norm of λµ on ∆∗. The F (p, s)-Teichmüller space TF (p,s) is

defined as TF (p,s) = M1
p,s(∆

∗)/ ∼, where M1
p,s(∆

∗) = Mp,s(∆
∗) ∩M(∆∗). It should be pointed

out that F (2, 1)-Teichmüller space is the BMO-Teichmüller space [6–8], the limit case F (2, 0)-

Teichmüller space is the Weil-Petersson Teichmüller space [9, 10] and F (p, 0)-Teichmüller space

is the p-integrable Teichmüller space [11–13].

The Bers projection Φ is defined by seeding µ ∈ M(∆∗) to the Schwarzian derivative Sfµ of

fµ on the unit disc ∆. Recall that for a conformal mapping f on ∆, its Schwarzian derivative

Sf is defined as

Sf = (Nf )
′ − 1

2
(Nf )

2, Nf = (log f ′)′.

The Bers projection maps the universal Teichmüller space into the complex Banach space B(∆)

which consists of all holomorphic functions on ∆ with norm

∥φ∥B = sup
z∈∆

|φ(z)|(1− |z|2)2 < ∞.

It is well known that the map Φ : M(∆∗) → B(∆) is a holomorphic split submersion [4, 5].

In [1], we proved that the Bers projection maps F (p, s)-Teichmüller space into the complex

Banach space N(p, s) which consists of all holomorphic functions f on ∆ with the following finite

norm

∥f∥pNp,s
= sup

a∈∆

x
∆

|f(z)|p(1− |z|2)s+2p−2 (1− |a|2)s

|1− az|2s
dxdy, (1.4)

and Φ : M1
p,s(∆

∗) → N(p, s) is holomorphic. We note that a holomorphic function f ∈ N(p, s)

if and only if [14]

|f(z)|p(1− |z|2)s+2p−2dxdy ∈ CMs(∆).
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In this paper, we shall prove the following result.

Theorem 1.1 Let p ≥ 2 and 0 < s < 2. The differential D0Φ of Bers projection Φ : M1
p,s(∆

∗) →
N(p, s) at the origin is given by the following correspondence

ν 7→ −6

π

x
∆∗

ν(w)

(w − z)4
dudv, (1.5)

which is a bounded mapping from Mp,s(∆
∗) to N(p, s).

2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. In what follows, C(·) will denote constant that

depends only on the elements put in the bracket.

Proof of Theorem 1.1 Let p ≥ 2 and 0 < s < 2. We first show that the differential D0Φ of

Bers projection Φ : M1
p,s(∆

∗) → N(p, s) at the origin is given by the correspondence (1.5).

Let µ ∈ Mp,s(∆
∗). We can choose ϵ > 0 such that tµ ∈ M1

p,s(∆
∗) for all t < 2ϵ. For simplicity

of notation, we use β(t) to denote the Schwarzian derivative Sftµ . It is well known [5, 15] that

β(t) is an analytic function of t for every z ∈ ∆ and

∂β(t)(z)

∂t
|t=0 = − 6

π

x
∆∗

µ(w)

(w − z)4
dudv.

Note that the Bers projection Φ : M1
p,s(∆

∗) → N(p, s) is holomorphic [1]. It is sufficient to

show that the limit

lim
t→0

β(t)− β(0)

t
=

∂β(t)

∂t
|t=0 (2.1)

exsits in N(p, s). In fact, for every a ∈ ∆, the Cauchy formula and Fubini theorem yield

x
∆

|β(t)(z)− β(0)(z)

t
− ∂β(t)(z)

∂t
|t=0|p(1− |z|2)s+2p−2|φ′

a(z)|sdxdy

=
|t|p

2pπp

x
∆

∣∣∣ ∫
|s|=2ε

β(s)(z)

(s− t)s2
ds

∣∣∣p(1− |z|2)s+2p−2|φ′
a(z)|sdxdy

≤ |t|p

2pπpε3p

x
∆

(∫
|s|=2ε

|β(s)(z)||ds|
)p

(1− |z|2)s+2p−2|φ′
a(z)|sdxdy

≤ C(ϵ)|t|p
x
∆

∫
|s|=2ε

|β(s)(z)|p|ds|(1− |z|2)s+2p−2|φ′
a(z)|sdxdy

= C(ϵ)|t|p
∫
|s|=2ε

x
∆

|β(s)(z)|p(1− |z|2)s+2p−2|φ′
a(z)|sdxdy|ds|

≤ C(ϵ)|t|p. (2.2)

The assertion follows.

Now, we prove that the linear operator D0Φ : Mp,s(∆
∗) → N(p, s) is bounded. For any

ζ ∈ ∂∆ and 0 < r < ∞, let B(ζ, r) = ∆ ∩D(ζ, r) and B∗(ζ, r) = ∆∗ ∩D(ζ, r), where D(ζ, r) is
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the disk with center ζ and radius r. Set

λ1/p
µ (w) :=

|µ(w)|
(|w|2 − 1)p1

, p1 =
2− s

p
.

Then x
B(ζ,r)

∣∣∣x
∆∗

µ(w)

(w − z)4
dudv

∣∣∣p(1− |z|2)s+2p−2dxdy

≤ 2p
x

B(ζ,r)

( x
B∗(ζ,2r)

λ
1/p
µ (w)(1− |z|2)2−p1(|w| − 1)p1

|z − w|4
dudv

)p

dxdy+

2p
x

B(ζ,r)

(1− |z|2)s+2p−2
( x
∆∗\B∗(ζ,2r)

λ
1/p
µ (w)(|w| − 1)p1

|z − w|4
dudv

)p

dxdy

= 2p(I1 + I2). (2.3)

For any z ∈ ∆, let Dz = {w : |w − z| > 1− |z|}. Consider kernel function

K(z, w) =
(1− |z|2)2−p1(|w| − 1)p1

|z − w|4
.

Then,

x
∆∗

K(z, w)dudv ≤
x
Dz

(1− |z|2)2−p1

|z − w|4−p1
dudv ≤ (1− |z|2)2−p12π

∫ ∞

1−|z|

1

r3−p1
dr = C0.

A similar argument gives that for any w ∈ ∆∗,x
∆

K(z, w)dxdy ≤ C1. (2.4)

It follows from the Schur’s theorem [16, Theorem 3.6] that the operator

Kf(z) =
x
∆∗

K(z, w)f(w)dudv

is bounded from Lp(∆∗) to Lp(∆). Let g(w) = λ
1/p
µ (w)χB∗(ζ,2r), where χB∗(ζ,2r) is the charac-

teristic functions of B∗(ζ, 2r). Thus,x
∆

∣∣∣x
∆∗

K(z, w)g(w)dudv
∣∣∣pdxdy ≤ C2

x
∆∗

|g(w)|pdudv

= C2

x
B∗(ζ,2r)

|µ(w)|p

(|w| − 1)2−s
dudv ≤ C2∥λµ∥crs. (2.5)

We proceed to estimate I2. Since λµ(w)dudv is an s-Carleson measure in ∆∗, the Hölder

inequality yields( x
B∗(ζ,r)

λ1/p
µ (w)dudv

)p

≤ (πr2)p−1
x

B∗(ζ,r)

λµ(w)dudv ≤ πp−1∥λµ∥cr2p−2+s.

Thus, we get

x
B(ζ,r)

(1− |z|2)s+2p−2
( ∞∑

i=1

x
B∗(ζ,2i+1r)\B∗(ζ,2ir)

λ
1/p
µ (w)(|w| − 1)p1

|z − w|4
)p

dxdy
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≤ C3∥λµ∥c
x

B(ζ,r)

(1− |z|2)s+2p−2
( ∞∑

i=1

(2i+1r)2−p1

(2ir)4−p1

)p

dxdy

≤ C4∥λµ∥crs. (2.6)

Combining (2.3), (2.5) with (2.6) gives ∥D0Φ∥N(p,s) ≤ ∥λµ∥s. The proof is completed. 2
3. Some remarks

Let p ≥ 2 and 0 < s < 2. We denote by T̃F (p,s) the set of functions log f ′, where f is

conformal on ∆ and admits a quasiconformal extension to the whole plane C such that its

complex dilatation µ satisfies

|µ(z)|p

(|z| − 1)2−s
dxdy ∈ CMs(∆

∗). (3.1)

It is known [1] that T̃F (p,s) is a disconnected subset of the space F (p, s). Furthermore, T̃b =

{log f ′ ∈ T̃F (p,s) : f(∆) is bounded } and T̃θ = {log f ′ ∈ T̃F (p,s) : f(e
iθ) = ∞}, θ ∈ [0, 2π), are

the connected components of T̃F (p,s).

Let µ ∈ M1
p,s(∆

∗) and z0 ∈ ∆∗. We use fz0
µ to denote the quasiconformal mapping on C

whose complex dilatation is µ in ∆∗ and zero in ∆, normalized by

fµ(0) = f ′
µ(0)− 1 = 0, fµ(z0) = ∞.

The pre-Bers projection mapping Lz0 on M1
p,s(∆

∗) is defined by setting Lz0(µ) = log(fz0
µ )′. Then

∪z0∈∆∗Lz0(M
1
p,s(∆

∗)) = T̃F (p,s) ∩ F (p, s)0, where F (p, s)0 consists of all functions φ ∈ F (p, s)

with φ(0) = 0.

In [1], we proved that the pre-Bers projection Lz0 : M1
p,s(∆

∗) → F (p, s)0 is holomorphic.

Analogous to Theorem 1.1, we obtain

Theorem 3.1 Let p ≥ 2 and 0 < s < 2. The differential D0L∞ of pre-Bers projection

L∞ : M1
p,s(∆

∗) → F (p, s)0 at the origin is given by the following correspondence

ν 7→ −2

π

x
∆∗

ν(w)

(z − w)3
dudv, (3.2)

which is a bounded mapping from Mp,s(∆
∗) to F (p, s).

Proof For abbreviation, we use ft(z) to stand for ftµ(z) for tµ ∈ M1
p,s(∆

∗). Then f0(z) = z.

Ahlfors and Bers [15] proved that for any fixed z, the function ft(z) is an analytic function of t

and
∂ft(z)

∂t

∣∣
t=0

= Fµ(z) = − 1

π

x
∆∗

(
1

w − z
− z

w − 1
+

z − 1

w
)µ(w)dudv.

We denote t-derivative by a dot and z-derivative by a prime. Noting that f ′
t(z)|t=0 = 1 and

f ′′
t (z)|t=0 = 0, we have

d

dt
(
f ′′
t (z)

f ′
t(z)

)
∣∣
t=0

=
ḟ ′′
t (z)f

′
t(z)− ḟ ′

t(z)f
′′
t (z)

f ′
t(z)

2

∣∣
t=0
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= F ′′
µ (z) =

−2

π

x
∆∗

ν(w)

(z − w)3
dudv.

By using the similar argument as in Theorem 1.1, we can prove that the differential D0L∞ of

pre-Bers projection L∞ : M1
p,s(∆

∗) → F (p, s)0 at the origin is d
dt

f ′′
t

f ′
t
|t=0 and it is a bounded

operator from Mp,s(∆
∗) to F (p, s). We omit the details. 2

It is well known that there are holomorphic local right inverses (i.e., section) to the Bers

projections of universal Teichmüller space [4, 5] and BMO-Teichmüller space [7]. Thus, it is

natural to ask the following

Problem 3.2 Whether there are holomorphic local sections to the Bers projection and pre-Bers

projection of F (p, s)-Teichmüller space?
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