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Abstract The growth of solutions of the following differential equation

f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f = 0

is studied, where Aj(z) is analytic in the unit disc D = {z : |z| < 1} for j = 0, 1, . . . , k− 1. Some

precise estimates of [p, q]-order of solutions of the equation are obtained by using a notion of new

[p, q]-type on coefficients.
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1. Introduction and main results

Since 1980s, it has been developed that the theory of complex linear differential equations in

the unit disc [1]. In general, many authors consider the following linear differential equation

f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f = 0, (1.1)

where Aj(z) is analytic in the unit disc D = {z : |z| < 1}, j = 0, 1, . . . , k − 1, k ≥ 2. One of the

main tools is Nevanlinna theory of meromorphic functions which can be found in [2–4]. It is well

known that all solutions of (1.1) are analytic functions in D if the coefficients of (1.1) are analytic

functions in D. Heittokangas investigated the complex differential equations in the unit disc, and

obtained many valuable results in [5]. From that time, it has been very interesting to study the

growth of analytic solutions of linear differential equations in the unit disc. Later on, more and

more results concerning the growth of solutions of (1.1) were done by different researchers, for

example, see [6–10] and reference therein. Recently, Zemirni and Beläıdi investigated the growth

of solutions of second order complex differential equations with analytic coefficients in D by using

a new notion called new type of analytic function, more details can be found in [11]. Here we

are going to study the growth of solutions of (1.1) by using two kinds of manners. On the one
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hand, the growth of solutions of (1.1) is studied by using Zemirni-Beläıdi’s idea, these results are

shown in Section 2 which are improvement of previous results from Zemirni and Beläıdi. On the

other hand, the growth of solutions of (1.1) is studied by using the notion of the lower order of

growth of analytic function.

In order to state our results, we firstly recall some notations. For a meromorphic function

f(z) in D, the order and the lower order are defined respectively by

σ(f) = lim sup
r→1−

log+ T (r, f)

log 1
1−r

, µ(f) = lim inf
r→1−

log+ T (r, f)

log 1
1−r

,

where T (r, f) = m(rf) + N(r, f) is the Nevanlinna characteristic function of f(z), where the

proximity function m(r, f) and the counting function N(r, f) are defined as follows

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ, N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

where n(r, f) denotes the number of poles of f(z) in the region {z : |z| ≤ r} counting its

multiplicities, and log+ x = max{0, log x}, more details can be found in [2]. It is easy to see that

µ(f) ≤ σ(f).

Let f(z) be an analytic function in D, its order and lower order can also be defined by

σM (f) = lim sup
r→1−

log+ log+ M(r, f)

log 1
1−r

, µM (f) = lim inf
r→1−

log+ log+ M(r, f)

log 1
1−r

,

respectively, where M(r, f) = max{|f(z)| : |z| ≤ r}.

Proposition 1.1 Suppose that f(z) is analytic in D. It follows from Tsuji’s result [12, Theorem

V. 13, p. 205] that

σ(f) ≤ σM (f) ≤ σ(f) + 1,

and there exists a function f(z) = e
1

(1−z)n such that σM (f) = n and σ(f) = n− 1, where n > 1.

For the following definitions, we define exp0 r = r, exp1 r = er and expn+1 r = exp(expn r),

log0 r = r, log1 r = log r, logn+1 r = log(logn r); moreover, we denote by log−n r = expn r and

exp−n r = logn r, where n ∈ N . Let p ≥ q ≥ 1, and f(z) be meromorphic in D. We define

respectively the [p, q]-order and the lower [p, q]-order of f(z) by

σ[p,q](f) = lim sup
r→1−

log+p T (r, f)

logq
1

1−r

, µ[p,q](f) = lim inf
r→1−

log+p T (r, f)

logq
1

1−r

.

If f(z) is an analytic function in D, similarly, the [p, q]-order and the lower [p, q]-order of f(z)

are defined respectively by

σ[p,q],M (f) = lim sup
r→1−

log+p+1 M(r, f)

logq
1

1−r

, µ[p,q],M (f) = lim inf
r→1−

log+p+1 M(r, f)

logq
1

1−r

.

Proposition 1.2 Let f(z) be analytic in D. It follows from [9, 13, 14, 16] that the following

statements hold:

(i) If p = q, then σ[p,q](f) ≤ σ[p,q],M (f) ≤ σ[p,q](f) + 1;

(ii) If p = q ≥ 2 and σ[p,q](f) < 1, then σ[p,q](f) ≤ σ[p,q],M (f) ≤ 1;
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(iii) If p = q ≥ 2 and σ[p,q](f) ≥ 1 or p > q ≥ 1, then σ[p,q](f) = σ[p,q],M (f).

By [11,14], we have the similar statements as follows:

Proposition 1.3 Let f(z) be analytic in D. The following statements hold:

(i) If p = q = 1, then µ[p,q](f) ≤ µ[p,q,M ](f) ≤ µ[p,q](f) + 1;

(ii) If p = q ≥ 2 and µ[p,q](f) < 1 then µ[p,q](f) ≤ µ[p,q],M (f) ≤ 1;

(iii) If p = q ≥ 2 and µ[p,q](f) ≥ 1, or p > q ≥ 1 then µ[p,q](f) = µ[p,q],M (f).

Let p ≥ q ≥ 1, and f(z) be a meromorphic function in D with 0 < σ[p,q](f) = σ < +∞ and

0 < µ[p,q](f) = µ < +∞. Then the [p, q]-type of f(z) and the lower [p, q]-type of f(z) are given

respectively by

τ[p,q](f) = lim sup
r→1−

log+p−1 T (r, f)

(logq−1
1

1−r )
σ
, τ [p,q](f) = lim inf

r→1−

log+p−1 T (r, f)

(logq−1
1

1−r )
µ
.

Similarly, if f(z) is an analytic function in D, we can also get the definition of the [p, q]-type and

the lower [p, q]-type of f(z) as follows,

τ[p,q],M (f) = lim sup
r→1−

log+p M(r, f)

(logq−1
1

1−r )
σ
, τ [p,q],M (f) = lim inf

r→1−

log+p M(r, f)

(logq−1
1

1−r )
µ
.

Proposition 1.4 Let f(z) be analytic in D. Then the following statements hold:

(i) If p = q ≥ 2 and σ[p,q](f) ≥ 1 or p > q ≥ 1, then τ[p,q](f) = τ[p,q],M (f) from [14,

Proposition 1.3];

(ii) If p = q ≥ 2 and µ[p,q](f) ≥ 1, or p > q ≥ 1, then τ [p,q](f) = τ [p,q],M (f) by Propsition 1.3.

For our results, the following notation is also needed. Let p > 2, and f(z) be a meromorphic

function in D with 0 < σ[p,q](f) = σ < +∞ and 0 < τ[p,q](f) = τ < +∞. Then, τ∗[p,q](f) is

defined by

τ∗[p,q](f) = lim sup
r→1−

log+p−2 T (r, f)

exp(τ(logq−1
1

1−r )
σ)

.

If f(z) satisfies 0 < µ[p,q](f) = µ < +∞ and 0 < τ [p,q](f) = τ < +∞, then τ∗[p,q](f) is defined by

τ∗[p,q](f) = lim inf
r→1−

log+p−2 T (r, f)

exp(τ(logq−1
1

1−r )
µ)

.

Let f(z) be analytic in D. In similar way, we define τ∗[p,q],M (f) and τ∗[p,q],M (f) respectively

by

τ∗[p,q],M (f) = lim sup
r→1−

log+p−1 M(r, f)

exp(τM (logq−1
1

1−r )
σM )

, τ∗[p,q],M (f) = lim inf
r→1−

log+p−1 M(r, f)

exp(τM (logq−1
1

1−r )
µM )

,

where 0 < σ[p,q],M (f) = σM < +∞, 0 < τ[p,q],M (f) = τM < +∞, 0 < µ[p,q],M (f) = µM < +∞
and 0 < τ [p,q],M (f) = τM < +∞.

Proposition 1.5 Let f(z) be analytic in D. By Propsitions 1.2–1.4, we have the following

statements:

(i) If p = q ≥ 2 and σ[p,q](f) ≥ 1 or p > q ≥ 1, then τ∗[p,q](f) = τ∗[p,q],M (f);
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(ii) If p = q ≥ 2 and µ[p,q](f) ≥ 1, or p > q ≥ 1, then τ∗[p,q](f) = τ∗[p,q],M (f).

The Proposition 1.5 shows that τ∗[p,q](Aj) can be replaced by τ∗[p,q],M (Aj) in Theorem 1.6 and

Theorem 1.8 when σ[p,q](f) ≥ 1 or p > q ≥ 1. And τ∗[p,q](Aj) can also be replaced by τ∗[p,q],M (Aj)

in Theorem 1.7 and Theorem 1.9 when µ[p,q](f) ≥ 1 or p > q ≥ 1.

Some estimations for the solutions of the second order complex differential equation were

obtained by using the notion of new type above, more details can be found in [11]. In the paper,

we investigate the growth of solutions of equation (1.1) by the new type τ∗[p,q](f) and τ∗[p,q](f), and

p ≥ q ≥ 1. Moreover, we denote the linear measure and logarithmic measure of a set E ⊂ [0, 1)

by m(E) =
∫
E
dt and ml(E) =

∫
E

1
1−tdt.

Here, we get the following results by [p, q]-order, [p, q]-type and a new [p, q]-type, in which

the coefficient A0(z) is a dominant coefficient by the manner of the new [p, q]-type.

Theorem 1.6 Let p > 2 and A0(z), A1(z), . . . , Ak−1(z) be analytic functions in D satisfying

the following conditions:

(i) 0 < max{σ[p,q](Aj) : j ̸= 0} ≤ σ[p,q](A0) < +∞;

(ii) 0 < max{τ[p,q](Aj) : σ[p,q](Aj) = σ[p,q](A0), j ̸= 0} ≤ τ[p,q](A0) < +∞;

(iii) 0 < max{τ∗[p,q](Aj) : τ[p,q](Aj) = τ[p,q](A0), σ[p,q](Aj) = σ[p,q](A0), j ̸= 0} < τ∗[p,q](A0) <

+∞.

Then, every nontrivial solution f(z) of (1.1), satisfies σ[p,q](f) = +∞ and σ[p,q](A0) ≤
σ[p+1,q](f) ≤ max{σ[p,q],M (Aj) : j = 0, 1, . . . , k − 1}. Furthermore, if p > q, then σ[p+1,q](f) =

σ[p,q](A0).

In the Theorem 1.7, the [p, q]-order of growth of solutions of (1.1) can be estimated by the

lower [p, q]-order of growth of coefficients A0(z), which is dominant in terms of the lower new

type τ∗[p,q].

Theorem 1.7 Let p > 2 and A0(z), A1(z), . . . , Ak−1(z) be analytic functions in D satisfying

the following conditions:

(i) 0 < max{µ[p,q](Aj) : j ̸= 0} ≤ µ[p,q](A0) < +∞;

(ii) 0 < max{τ [p,q](Aj) : µ[p,q](Aj) = µ[p,q](A0), j ̸= 0} ≤ τ [p,q](A0) < +∞;

(iii) 0 < max{τ∗[p,q](Aj) : τ [p,q](Aj) = τ [p,q](A0), µ[p,q](Aj) = µ[p,q](A0), j ̸= 0} < τ∗[p,q](A0) <

+∞, and there exists a set having infinite logarithmic measure such that the conclusion of Lemma

2.4 holds for all the coefficients Aj (j ̸= 0).

Then, every nontrivial solution f(z) of (1.1), satisfies σ[p,q](f) = +∞ and µ[p,q](A0) ≤
σ[p+1,q](f).

In the two theorems above, the growth of the solutions of (1.1) has been estimated by A0(z).

From that, we are going to consider the following results, in which the coefficient As(z) is a

dominant coefficient, where s ̸= 0.

Theorem 1.8 Let p > 2 and A0(z), A1(z), . . . , Ak−1(z) be analytic functions in D satisfying

the following conditions:

(i) 0 < max{σ[p,q](Aj) : j ̸= s} ≤ σ[p,q](As) < +∞;
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(ii) 0 < max{τ[p,q](Aj) : σ[p,q](Aj) = σ[p,q](As), j ̸= s} ≤ τ[p,q](A0) < +∞;

(iii) 0 < max{τ∗[p,q](Aj) : τ[p,q](Aj) = τ[p,q](As), σ[p,q](Aj) = σ[p,q](As), j ̸= s} < τ∗[p,q](As) <

+∞.

Then, every nontrivial solution f(z) of (1.1), in which f (n) just has finite many zeros

for all n < s (n = 0, . . . , s − 1), satisfies σ[p,q](f) = +∞ and σ[p,q](As) ≤ σ[p+1,q](f) ≤
max{σ[p,q],M (Aj) : j = 0, 1, . . . , k − 1}. If p > q, then σ[p+1,q](f) = σ[p,q](As).

The last result shows the estimate of [p, q]-order of solutions of (1.1) using the lower [p, q]-

order of As(z), as same as the Theorem 1.9, the coefficient As(z) is dominant coefficient, where

s ̸= 0.

Theorem 1.9 Let p > 2 and A0(z), A1(z), . . . , Ak−1(z) be analytic functions in D satisfying

the following conditions:

(i) 0 < max{µ[p,q](Aj) : j ̸= s} ≤ µ[p,q](As) < +∞;

(ii) 0 < max{τ [p,q](Aj) : µ[p,q](Aj) = µ[p,q](As), j ̸= s} ≤ τ [p,q](As) < +∞;

(iii) 0 < max{τ∗[p,q](Aj) : τ [p,q](Aj) = τ [p,q](As), µ[p,q](Aj) = µ[p,q](As), j ̸= s} < τ∗[p,q](As) <

+∞, and there exists a set having infinite logarithmic measure such that the conclusion of

Lemma 2.4 holds for all the coefficients Aj(j ̸= s).

Then, every nontrivial solution f(z) of (1.1), in which f (n) just has finite many zeros for all

n < s (n = 0, . . . , s− 1), satisfies σ[p,q](f) = +∞ and µ[p,q](As) ≤ σ[p+1,q](f).

2. Auxiliary results

In the section, some preliminaries results are given for proving Theorems 1.6–1.9. The first

result comes from [2, p. 55], and can also be found in [5, p. 8].

Lemma 2.1 Let f(z) be a nonconstant meromorphic function in D. Then

m

(
r,
f (k)

f

)
= S(r, f), r ̸∈ E,

where k ∈ N , S(r, f) = O
(
log+ T (r, f) + log 1

1−r

)
and

∫
E

1
1−rdt < ∞.

For the new type τ∗[p,q](f), an estimation is obtained in [11] which plays an important role in

proving our results.

Lemma 2.2 ([11]) Let p ≥ 2 and f(z) be a nonconstant meromorphic function in D such that

0 < σ[p,q](f) = σ < +∞, 0 < τ[p,q](f) = τ < +∞, 0 < τ∗[p,q](f) = τ∗ < +∞. Then for any given

β < τ∗, there exists a subset E ∈ [0, 1) that has infinite logarithmic measure such that for all

r ∈ E, we have

logp−2 T (r, f) > β exp

(
τ

(
logq−1

1

1− r

)σ)
.

The following result shows the relationship between the growth of solution of (1.1) and the

growth of coefficients of (1.1).

Lemma 2.3 ([13, Lemma 2.5]) If A0(z), A1(z), . . . , Ak−1(z) are analytic functions of [p, q]-order
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in D, then every nontrivial solutions f of (1.1) satisfies

σ[p+1,q](f) ≤ σ[p+1,q],M (f) ≤ max{σ[p,q],M (Aj) : j = 0, 1, . . . , k − 1}.

Lemma 2.4 ([11]) Let p ≥ 2 and f(z) be a nonconstant meromorphic function in D such that

0 < µ[p,q](f) = µ < +∞, 0 < τ [p,q](f) = τ < +∞ and 0 < τ∗[p,q](f) = τ∗ < +∞. Then for any

given ε > 0, there exists a subset E ∈ [0, 1) that has infinite logarithmic measure such that for

all r ∈ E, we have

T (r, f) ≤ expp−2

(
(τ∗ + ε) exp

(
τ

(
logq−1

1

1− r

)µ))
.

The following result is lemma on the logarithmic derivative, which can be found in [15].

Lemma 2.5 Let k and j be integers satisfying k > j ≥ 0, and let ε > 0 and d ∈ (0, 1). If f(z)

is meromorphic in D such that f (j) does not vanish identically, then∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤
((

1

1− r

)2+ε

max

{
log

1

1− r
, T (s(r), f)

})k−j

, r ̸∈ E,

where s(r) = 1− d(1− r), and the set E ⊂ [0, 1) has finite logarithmic measure.

3. Proofs of Theorems 1.6 and 1.7

Now, we apply Lemmas 2.1–2.4 to prove Theorems 1.6 and 1.7. Firstly, Theorem 1.6 is

proved as follows.

Proof of Theorem 1.6 Let σ, τ , τ∗ be positive finite numbers satisfying σ[p,q](A0) = σ,

τ[p,q](A0) = τ , τ∗[p,q](A0) = τ∗. From the conditions of Theorem 1.6, there exist two real constants

α and β satisfying 0 < max{τ∗[p,q](Aj) : τ[p,q](Aj) = τ[p,q](A0), σ[p,q](Aj) = σ[p,q](A0)} < α < β <

τ∗. Then for all r → 1−, we have

m(r,Aj) ≤ expp−2

(
α exp

(
τ

(
logq−1

1

1− r

)σ))
. (3.1)

By Lemma 2.2, there exists a set E1 ∈ [0, 1) that has infinite logarithmic measure such that

for all r ∈ E1, we have

m(r,A0) ≥ expp−2

(
β exp

(
τ

(
logq−1

1

1− r

)σ))
. (3.2)

By (1.1), we get

−A0(z) =
f (k)

f
+Ak−1(z)

f (k−1)

f
+ · · ·+A1(z)

f ′

f
,

then

m(r,A0) ≤
k∑

i=1

m

(
r,
f (i)

f

)
+

k−1∑
j=1

m(r,Aj) + log k.

It follows from the inequality above and by Lemma 2.1, there exists a set E2 ⊂ [0, 1) that
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has finite logarithmic measure, for all r ∈ [0, 1)\E2, we can get

m(r,A0) ≤ O

(
log+ T (r, f) + log

1

1− r

)
+

k−1∑
j=1

m(r,Aj) + log k. (3.3)

Combining (3.1)–(3.3), for all r ∈ E1\E2 and r → 1−, we have

expp−2

(
β exp

(
τ

(
logq−1

1

1− r

)σ))
< O

(
log+ T (r, f) + log

1

1− r

)
+ t(k − 1) expp−2

(
α exp

(
τ

(
logq−1

1

1− r

)σ))
.

Since β > α, for p > 2 and r → 1− we have

expp−2

(
β exp

(
τ

(
logq−1

1

1− r

)σ))
> (k − 1) expp−2

(
α exp

(
τ

(
logq−1

1

1− r

)σ))
,

which implies that

expp−2

(
β exp

(
τ

(
logq−1

1

1− r

)σ))
< O

(
log+ T (r, f) + log

1

1− r

)
.

Therefore

σ[p,q](f) = +∞

and

σ[p+1,q](f) ≥ σ = σ[p,q](A0).

On the other hand, by Lemma 2.3, we have

σ[p+1,q](f) ≤ max{σ[p,q],M (Aj) : j = 0, 1, . . . , k − 1}.

This implies that

σ[p,q](A0) ≤ σ[p+1,q](f) ≤ max{σ[p,q],M (Aj) : j = 0, 1, . . . , k − 1}.

If p > q, then

max{σ[p,q],M (Aj) : j = 0, 1, . . . , k − 1} = σ[p,q](A0).

Therefore, we conclude that σ[p+1,q](f) = σ[p,q](A0). �

Proof of Theorem 1.7 Let µ, τ , τ∗ be positive finite numbers satisfying µ[p,q](A0) = µ,

τ [p,q](A0) = τ , τ∗[p,q](A0) = τ∗. By the conditions of Theorem 1.7, there exist two real constants

α and β such that

0 < max{τ∗[p,q](Aj) : τ [p,q](Aj) = τ [p,q](A0), µ[p,q](Aj) = µ[p,q](A0), j ̸= 0} < α < β < τ∗.

Then for any given ε satisfying 0 < ε < min{ τ∗−β
2 , β−α

2 }, there exists r0 ∈ [0, 1), such that for

all r ∈ (r0, 1),

m(r,A0) ≥ expp−2

(
(τ∗ − ε) exp

(
τ

(
logq−1

1

1− r

)µ))
. (3.4)



394 Sangui ZENG and Jianren LONG

By Lemma 2.4 and the conditions of Theorem 1.7, there exists a set E3 ⊂ [0, 1) that has

infinite logarithmic measure such that for all r ∈ E3 and j ̸= 0,

m(r,Aj) ≤ expp−2

(
(α+ ε) exp

(
τ

(
logq−1

1

1− r

)µ))
. (3.5)

Combining (3.3)–(3.5), for all r ∈ E3\E2 and using the similar way in the proof of Theorem

1.6, we can easily get the conclusion. �

4. Proofs of Theorems 1.8 and 1.9

Here, we prove Theorems 1.8 and 1.9 by using Lemmas 2.2–2.5 as follows.

Proof of Theorem 1.8 By Lemma 2.5, there exists a set E4 that has finite logarithmic measure,

for all k > i (i, k ∈ N) and r ∈ [0, 1)\E4, we have∣∣∣∣f (k)(z)

f (i)(z)

∣∣∣∣ ≤
((

1

1− r

)2+ε

max

{
log

1

1− r
, T (s(r), f)

})k−i

.

If r tends to 1−, then log 1
1−r > 1 and T (s(r), f) = T (r, f). Thus we get

m

(
r,
f (k)

f (i)

)
≤ log+

((
1

1− r

)2+ε(
log

1

1− r
+ T (s(r), f)

))k−i

≤(k − i) log+

((
1

1− r

)2+ε(
log

1

1− r
+ T (r, f)

))

≤(k − i) (2 + ε) log+
1

1− r
+ (k − i) log+ log

1

1− r
+ (k − i) log+ T (r, f)

≤O

(
log+ T (r, f) + log+

1

1− r

)
, r → 1.

Then, for r ∈ [0, 1)\E4 and r → 1, we obtain

m

(
r,
f (k)

f (i)

)
≤ O

(
log+ T (r, f) + log+

1

1− r

)
. (4.1)

Let σ, τ , τ∗ be positive finite numbers such that σ[p,q](As) = σ, τ[p,q](As) = τ , τ∗[p,q](As) = τ∗.

Set

max{τ∗[p,q](Aj) : τ[p,q](Aj) = τ[p,q](As), σ[p,q](Aj) = σ[p,q](As), j ̸= s} = β1,

and let β2 be a real constant such that β1 < β2 < τ∗. Then, for any given ε satisfying 0 < ε <

min{β2−β1

2 , τ∗−β2

2 }, there exists r0 ∈ [0, 1) such that for all r ∈ (r0, 1),

m(r,Aj) ≤ expp−2

(
(β1 + ε) exp

(
τ

(
logq−1

1

1− r

)σ))
. (4.2)

By Lemma 2.2, there exists a set E5 ⊂ [0, 1) that has infinite logarithmic measure such that

for all r ∈ E5, we have

m(r,As) ≥ expp−2

(
(τ∗ − ε) exp

(
τ

(
logq−1

1

1− r

)σ))
. (4.3)
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On the other hand, by the First Main Theorem in Nevanlinna theory and the hypotheses of

Theorem 1.8, for n < s, we get

T

(
r,
f (n)

f (s)

)
= T

(
r,

f (s)

f (n)

)
+O(1) = m

(
r,

f (s)

f (n)

)
+N

(
r,

f (s)

f (n)

)
+O(1).

Since f (n) just has finite many zeros for all n < s (n = 0, . . . , s−1), by the properties of analytic

functions and the definition of the counting function, we obtain

N(r,
f (s)

f (n)
) = O(1).

Thus

m

(
r,
f (n)

f (s)

)
≤ T

(
r,
f (n)

f (s)

)
≤ m

(
r,

f (s)

f (n)

)
+O(1). (4.4)

By (1.1), we get

−As =
f (k)

f (s)
+ · · ·+As+1

f (s+1)

f (s)
+As−1

f (s−1)

f (s)
+ · · ·+A0

f

f (s)
,

and then

m(r,As) ≤
∑
j ̸=s

m(r,Aj) +
∑

s<i≤k

m

(
r,

f (i)

f (s)

)
+
∑

0≤n<s

m

(
r,
f (n)

f (s)

)
+ log k. (4.5)

Combining (4.1)–(4.5), for all r ∈ E5\E4 and r → 1−, we have

expp−2

(
(τ∗ − ε) exp

(
τ

(
logq−1

1

1− r

)σ))
≤ O

(
log+ T (r, f) + log+

1

1− r

)
+ expp−2

(
(β1 + ε) exp

(
τ

(
logq−1

1

1− r

)σ))
.

By using the similar way as in the proof of Theorem 1.6, we deduce that

σ[p,q](f) = +∞

and

σ[p+1,q](f) ≥ σ = σ[p,q](As).

By Lemma 2.3, and using the same reasoning as in the proof of Theorem 1.6, we get

σ[p+1,q](f) ≤ max{σ[p,q],M (Aj) : j = 0, 1, . . . , k − 1}, and σ[p+1,q](f) = σ[p,q](As) for p > q. �

Proof of Theorem 1.9 By Lemmas 2.4 and 2.5 and using similar method as in the proof of

Theorem 1.8, the conclusion can be obtained, here we omit the details. �
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