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Abstract In this paper, we consider the Liouville-type theorem for stable solutions of the

following Kirchhoff equation

M
(∫

RN

|∇u|2dx
)
∆u = g(x)u−q, x ∈ RN ,

where M(t) = a + btθ, a > 0, b, θ ≥ 0, θ = 0 if and only if b = 0. N ≥ 2, q > 0 and the

nonnegative function g(x) ∈ L1
loc(RN ). Under suitable conditions on g(x), θ and q, we investigate

the nonexistence of positive stable solution for this problem.
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1. Introduction

In this paper, we are concerned with Liouville-type theorem for stable solution of the Kirchhoff

equation

M
(∫

RN

|∇u|2dx
)
∆u = g(x)u−q, x ∈ RN , (1.1)

where M(t) = a+ btθ, a > 0, b, θ ≥ 0, θ = 0 if and only if b = 0. N ≥ 2, q > 0, g(x) ∈ L1
loc(RN ) is

nonnegative, the exact assumption on g(x) will be given latter. Such problem is often referred to

as being nonlocal because of the presence of the integral over the entire domain RN . When θ = 1,

problem (1.1) is analogous to the stationary problem of a model introduced by Kirchhoff [1]. More

precisely, Kirchhoff proposed a model given by the equation

ρutt −
(p0
h

+
E

2L

∫ L

0

u2
xdx

)
uxx = 0, t > 0, x ∈ (0, L), (1.2)
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where ρ, p0, h, E, L are all positive constants. This equation extends the classical D’Alembert

wave equation. For the bounded domain Ω, the problem{
−(a+ b

∫
Ω
|∇u|2dx)∆u = f(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω
(1.3)

is related to the stationary analogue of (1.2). Such nonlocal elliptic problem like (1.3) has received

a lot of attention and some important and interesting results have been established, see [2–5]

and the references therein.

Recently, much attention has been paid for Kirchhoff elliptic equation on RN . Li et al. [6]

studied the following problem(
a+ λ

∫
RN

(|∇u|2 + bu2)dx
)
(−∆u+ bu) = f(u), x ∈ RN , (1.4)

where N ≥ 3 and a, b are positive constants, λ ≥ 0 is a parameter. They proved the existence of

a positive solution to problem (1.4) with small λ ∈ [0, λ0). Fan and Liu [7] studied the existence

of multiple solutions for the Kirchhoff equation(
a+ µ

∫
RN

(|∇u|2 + V (x)u2)dx
)
(−∆u+ V (x)u) = f(x, u) + g(x)|u|q−2u, x ∈ RN , (1.5)

where µ ≥ 0 is small, N ≥ 3, 1 < q < 2, a > 0, and the potential function V (x) ∈ C(RN )

satisfying infx∈RN V (x) > 0 and meas({x ∈ RN |V (x) ≤ M}) < ∞ for each M > 0. This

assumption guarantees that the embeddingW 1,2(RN ) ↪→ Ls(RN ) is compact for each 2 ≤ s < 2∗.

For problem (1.5), the function f(x, u) verifies |f(x, t)| ≤ C(1 + |t|p−1), limt→0 t
−1f(t) = 0,

limt→∞ t−1f(t) = ∞, and ∥g∥q′(q′ = 2∗/(2∗ − q) is small.

Li and Su [8], Nie and Wu [9], also considered problem (1.5), where the potential V (x) is

radially symmetric function. The other class of potential V (x) ∈ C(RN ) satisfying

0 < V0 = inf
x∈RN

V (x) ≤ lim
|x|→∞

V (x) = sup
x∈RN

V (x) := V∞ < ∞ (1.6)

has also been studied, see [10–12] and the references therein.

We note that, in the above works, one always assumes that the potential function V (x) ≥ 0

and V (x) ̸≡ 0 in RN .

On the other hand, the nonexistence and stability of solutions to nonlinear partial differential

equations also have been studied in recent years. We refer the readers to [13–21] and the references

therein. It is worth pointing out that for the singular elliptic equation (1.1), Ma and Wei in [20]

obtained:

Theorem 1.1 Let q > 0, g(x) = 1 and M(t) = 1 in (1.1). Moreover, if

2 ≤ N < 2 +
4

1 + q
(q +

√
q2 + q), (1.7)

then there are no stable positive solutions to (1.1) in RN .

Remark 1.2 Obviously, if 2 < N < 10, then (1.7) implies that

q > p0 := −1− 4(N − 4 + 2
√
N − 1)

(N − 2)(N − 10)
. (1.8)
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Motivated by [18, 22, 23], we will study the nonexistence of positive stable solution of (1.1). We

now introduce the main results in this paper.

As in [24], let X = D1,2(RN ) be the completion of the space C∞
0 (RN ) endowed with the

norm of ∥u∥X = (
∫
RN |∇u|2dx)1/2. Then there exists a positive constant S such that(∫

RN

|u|2
∗
dx

)1/2∗

≤ S
(∫

RN

|∇u|2dx
)1/2

, or ∥u∥2∗ ≤ S∥u∥X , ∀u ∈ X (1.9)

which is called the Sobolev’s inequality in [25], where 2∗ is the Sobolev critical exponent.

Now we consider the energy functional of (1.1) I : X → R defined by

I(u) = a

2
∥u∥2X +

b

2(θ + 1)
∥u∥2(θ+1)

X +
1

1− q

∫
RN

g(x)u1−qdx. (1.10)

It is well known that if u ∈ X is a weak solution of (1.1), then for any ζ ∈ X, the function

E(t) = I(u+ tζ) satisfies E′(0) = 0, that is,

E′(0) = I ′(u)ζ =
(
a+ b∥u∥2θX

)∫
RN

∇u · ∇ζdx+

∫
RN

g(x)u−qζdx = 0, ∀ ζ ∈ X. (1.11)

As in [13], we say that the positive solution u of (1.1) is stable if E′′(0) ≥ 0. A routine calculation

shows that

E′(t)− E′(0)

t
=

I ′(u+ tζ)ζ − I ′(u)ζ

t
=

b(∥u+ tζ∥2θX − ∥u∥2θX )

t

∫
RN

∇u · ∇ζdx+

(a+ b∥u+ tζ∥2θX )

∫
RN

|∇ζ|2dx+
1

t

∫
RN

g(x)((u+ tζ)−q − u−q)ζdx (1.12)

and

E′′(0) = lim
t→0

E′(t)− E′(0)

t
= 2bθ∥u∥2(θ−1)

X

(∫
RN

∇u · ∇ζdx
)2

+

(a+ b∥u∥2θX )

∫
RN

|∇ζ|2dx− q

∫
RN

g(x)u−q−1ζ2dx. (1.13)

Set Qu(ζ) = E′′(0). We now define stability as follows.

Definition 1.3 A positive weak solution u ∈ X of (1.1) is stable if Qu(ζ) ≥ 0 for any ζ ∈ X.

Remark 1.4 The quadratic form Qu is called the second variation of the energy functional

I. Then, the stability condition translates into the fact that the second variation of the energy

functional is non-negative. Thus, all the minima of the functional I are stable solutions of (1.1),

see [13].

Remark 1.5 If u ∈ X is a stable positive weak solution of (1.1), applying Hölder inequality

and (1.13), we deduce that

q

∫
RN

g(x)u−q−1ζ2dx ≤ A

∫
RN

|∇ζ|2dx, ∀ ζ ∈ X (1.14)

with

A = a+ b(1 + 2θ)∥u∥2θX . (1.15)

Throughout this paper, we give the following assumption on g(x).
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(H1) g(x) ∈ L1
loc(RN ) is nonnegative in RN . Moreover, there exist k > −2 and R0, c0 > 0

such that g(x) ≥ c0|x|k, ∀ |x| ≥ R0.

Our main result can be included in the following theorem:

Theorem 1.6 Let (H1) and M(t) = a + btθ, a > 0, b, θ ≥ 0 hold, θ = 0 if and only if b = 0.

Assume that one of the following conditions is satisfied:

(H2) θ ≥ 0 and N = 2, q > 0;

(H3) 0 ≤ θ ≤ 3
2 and 2 < N < 2 + 4(2+k)

1+2θ , q > α0;

(H4) θ > 3
2 and 2 < N < 2 + 4(2+k)

1+2θ , q > β0;

(H5) θ > 3
2 and N = 2 + 4(2+k)

1+2θ , q > 4
2θ−3 ;

(H6) θ > 3
2 and 2 + 4(2+k)

1+2θ < N < 2 + (1+
√
1+2θ)(2+k)

2θ , β1 < q < β2,

where

α0 = −1−
2(2 + k)[N − 4− k +

√
(N + k)2 − (N − 2)2(1 + 2θ)]

(N − 2)[(N − 2)(1 + 2θ)− 4(2 + k)]
. (1.16)

β0 = −1−
2(2 + k)[N − 4− k +

√
(N + k)2 − (N − 2)2(1 + 2θ)]

(N − 2)[(N − 2)(1 + 2θ)− 4(2 + k)]
. (1.17)

β1,2 = −1−
2(2 + k)[N − 4− k ±

√
(N + k)2 − (N − 2)2(1 + 2θ)]

(N − 2)[(N − 2)(1 + 2θ)− 4(2 + k)]
. (1.18)

Then (1.1) has no positive weak stable solution.

Remark 1.7 (i) If θ = 0, we obtain

α0 = −1−
2(2 + k)[N − 4− k +

√
(2N − 2 + k)(2 + k)]

(N − 2)(N − 10− 4k)
. (1.19)

Then α0 is equal to the exponent p(N,α) in [26].

(ii) If θ = 0, k = 0, we obtain

α0 = −1− 4(N − 4 + 2
√
N − 1)

(N − 2)(N − 10)
. (1.20)

Then α0 is equal to the exponent qc(2, N) in [27] and α0 = p0, where p0 is the critical exponent

(1.8) and coincides with that in [20].

2. Proof of Theorem 1.6

To prove the nonexistence of positive weak stable solution of (1.1), we use the test function

method, which has been used in [18, 22, 23]. Since Kirchhoff equation (1.1) is nonlocal, some

modification in choosing test functions is necessary.

We first establish the following lemma.

Lemma 2.1 Let u ∈ C1, ω
loc (RN ) (0 < ω < 1) be a positive weak stable solution of (1.1) with

q > 0. Then for every γ ∈ (γ(q),−1), where

γ(t) = −
1 + 2θ + 2t+ 2

√
t(t+ 1 + 2θ)

1 + 2θ
, t > 0 (2.1)
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and for any constant m ≥ q−γ
q+1 , there exists a positive constant C depending on q, γ,m, a, b, θ

such that ∫
RN

(g(x)uγ−q + |∇u|2uγ−1)φ2mdx ≤ CA
q−γ
q+1

∫
RN

g(x)
γ+1
q+1 |∇φ|

2(q−γ)
q+1 dx, (2.2)

where φ(x) ∈ C1
0 (RN ) is any nonnegative function with 0 ≤ φ(x) ≤ 1 and A is given by (1.15).

Proof Let u ∈ C1,ω
loc (RN ) (0 < ω < 1) be a positive weak stable solution of (1.1) and γ < −1.

Choosing ζ = uγφ2 as a test function in (1.11), we obtain

|γ|A1

∫
RN

|∇u|2uγ−1φ2dx ≤ 2A1

∫
RN

|∇u||∇φ|uγφdx+

∫
RN

g(x)uγ−qφ2dx, (2.3)

where A1 = a+ b∥u∥2θX . Applying Young’s inequality with any ε ∈ (0, 1), we get

2

∫
RN

|∇u||∇φ|uγφdx ≤ ε

∫
RN

|∇u|2uγ−1φ2dx+ C1

∫
RN

|∇φ|2uγ+1dx. (2.4)

Here and in what follows, we denote by Cj a positive constant depending on ε and q, γ, θ.

Combining (2.3) with (2.4) enables us to deduce

(|γ| − ε)A1

∫
RN

|∇u|2uγ−1φ2dx ≤
∫
RN

g(x)uγ−qφ2dx+ C1A1

∫
RN

|∇φ|2uγ+1dx. (2.5)

On the other hand, using the stability assumption with ζ = u
γ+1
2 φ in (1.14) yields

q

∫
RN

g(x)uγ−qφ2dx ≤ (1 + γ)2

4
A

∫
RN

|∇u|2uγ−1φ2dx+A

∫
RN

|∇φ|2uγ+1dx+

(1 + |γ|)A
∫
RN

|∇u||∇φ|uγφdx. (2.6)

By Young’s inequality, it follows that

(1 + |γ|)
∫
RN

|∇u||∇φ|uγφdx ≤ ε

∫
RN

|∇u|2uγ−1φ2dx+ C2

∫
RN

|∇φ|2uγ+1dx, (2.7)

where ε coincides with that in (2.4). Plugging (2.7) into (2.6), we can deduce

q

∫
RN

g(x)uγ−qφ2dx ≤ [(1 + γ)2 + 4ε]

4
A

∫
RN

|∇u|2uγ−1φ2dx+ C3A

∫
RN

|∇φ|2uγ+1dx. (2.8)

Furthermore, from (2.5) and (2.8) we have

q

∫
RN

g(x)uγ−qφ2dx ≤ [(1 + γ)2 + 4ε]A

4(|γ| − ε)A1

∫
RN

g(x)uγ−qφ2dx+ C4A

∫
RN

|∇φ|2uγ+1dx

≤ [(1 + γ)2 + 4ε](1 + 2θ)

4(|γ| − ε)

∫
RN

g(x)uγ−qφ2dx+ C4A

∫
RN

|∇φ|2uγ+1dx, (2.9)

that is

qε

∫
RN

g(x)uγ−qφ2dx ≤ C4A

∫
RN

|∇φ|2uγ+1dx, (2.10)

with

qε = q − [(1 + γ)2 + 4ε](1 + 2θ)

4(|γ| − ε)
, lim

ε→0+
qε = q0 = q − (1 + γ)2(1 + 2θ)

4|γ|
. (2.11)
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Thanks to γ ∈ (γ(q),−1), q0 > 0 holds, where γ(t) is defined by (2.1). Thus, we can select

sufficiently small ε > 0 such that qε > 0.

Applying (2.10) and (2.5), we conclude that∫
RN

|∇u|2uγ−1φ2dx ≤ C5

∫
RN

|∇φ|2uγ+1dx. (2.12)

Now we claim that (2.2) is true. In fact, we can choose some constant m large enough satisfying

(m− 1)(γ − q)

γ + 1
≥ m, or m ≥ q − γ

q + 1
. (2.13)

By virtue of 0 ≤ φ(x) ≤ 1 in RN , one can achieve

[φ(x)]
2(m−1)(γ−q)

(γ+1) ≤ [φ(x)]2m, ∀x ∈ RN . (2.14)

Replacing φ in (2.10) with φm and utilizing the Hölder inequality, we arrive at∫
RN

g(x)uγ−qφ2mdx ≤ C6A

∫
RN

|∇φ|2φ2(m−1)uγ+1dx

≤ C6A
(∫

RN

g(x)uγ−qφ
2(m−1)(γ−q)

γ+1 dx
) γ+1

γ−q
(∫

RN

g(x)
γ+1
q+1 |∇φ|

2(q−γ)
q+1 dx

) q+1
q−γ

≤ C6A
(∫

RN

g(x)uγ−qφ2mdx
) γ+1

γ−q
(∫

RN

g(x)
γ+1
q+1 |∇φ|

2(q−γ)
q+1 dx

) q+1
q−γ

. (2.15)

Consequently, we obtain∫
RN

g(x)uγ−qφ2mdx ≤ C7A
q−γ
q+1

∫
RN

g(x)
γ+1
q+1 |∇φ|

2(q−γ)
q+1 dx. (2.16)

Analogously, with φ replaced by φm in (2.12), it follows from (2.12), (2.15) and (2.16) that∫
RN

|∇u|2uγ−1φ2mdx ≤ C8

∫
RN

|∇φ|2φ2(m−1)uγ+1dx

≤ C9A
q−γ
q+1

∫
RN

g(x)
γ+1
q+1 |∇φ|

2(q−γ)
q+1 dx. (2.17)

Combining (2.16) with (2.17) enables us to deduce (2.2). The proof is completed. 2
Proof of Theorem 1.6 Define φ0(s) ∈ C1

0 [0,+∞) with

φ0(s) =

{
1, 0 ≤ s ≤ 1,

0, s > 2.
(2.18)

Let φ(x) = φ0(
|x|
R ) for R ≥ R0, where R0 is given in (H1). Obviously, φ(x) ∈ C1

0 (RN ) with

0 ≤ φ(x) ≤ 1. A direct calculation shows that there exists C > 0 such that |∇φ(x)| ≤ CR−1,

x ∈ B2R \BR and |∇φ(x)| = 0, x ∈ BR ∪B
c

2R, where Br = {x ∈ RN : |x| < r}.
Suppose on the contrary that (1.1) admits a positive weak stable solution, then utilizing the

assumption (H1) and the estimate (2.2), we have∫
RN

g(x)uγ−qφ2mdx+

∫
RN

|∇u|2uγ−1φ2mdx

≤ CA
q−γ
q+1 R

−2(q−γ)
q+1

∫
R<|x|≤2R

|x|
k(γ+1)
q+1 dx
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≤ CA
q−γ
q+1 RN− 2(q−γ)−k(γ+1)

q+1 , (2.19)

where C denote various positive constants.

Set

ρ = N − 2(q − γ)− k(γ + 1)

q + 1
. (2.20)

Obviously, if ρ < 0, passing to the limits as R → +∞ in (2.19), we deduce a contradiction.

Next, we are devoted to choosing some appropriate γ such that ρ < 0. To do this, we define the

function

h(t) =
2[t− γ(t)]− k[γ(t) + 1]

t+ 1
, t > 0, (2.21)

where γ(t) is given by (2.1). A direct calculation leads to

lim
t→0+

γ(t) = −1, γ′(t) < 0, t > 0, lim
t→+∞

γ(t) = −∞, (2.22)

and

lim
t→0+

h(t) = 2 ≤ N, lim
t→+∞

h(t) = 2 +
4(2 + k)

1 + 2θ
, (2.23)

h′(t) =
(2 + k)

(
2
√

t(t+ 1 + 2θ) + 1 + 2θ + t(1− 2θ)
)

(1 + 2θ)
√
t(t+ 1 + 2θ)(t+ 1)2

, t > 0. (2.24)

A routine calculation shows that if 0 ≤ θ ≤ 3
2 , then h(t) is strictly increasing on (0,+∞); if θ > 3

2 ,

then h(t) is strictly increasing on (0, 1+2θ+2
√
1+2θ

2θ−3 ) and strictly decreasing on ( 1+2θ+2
√
1+2θ

2θ−3 ,+∞).

Moreover, h( 1+2θ+2
√
1+2θ

2θ−3 ) = 2 + (1+
√
1+2θ)(2+k)

2θ , h( 4
2θ−3 ) = 2 + 4(2+k)

1+2θ .

Therefore, if N = 2 and θ ≥ 0, then N < h(t), ∀ t > 0. So if we fix γ ∈ (γ(t),−1) suitably

near γ(t), we obtain

N <
2(t− γ)− k(γ + 1)

t+ 1
. (2.25)

Letting R → +∞ in (2.19), we get a contradiction.

If 2 < N < 2 + 4(2+k)
1+2θ and 0 ≤ θ ≤ 3

2 , by the properties of the function h(t), there exists a

unique α0 > 0 such that N < h(t), t > α0. From this, taking R → +∞ in (2.19), we deduce a

contradiction. Clearly, α0 may be deduced from the equation N = h(q), which is given in (1.16).

If 2 < N < 2+ 4(2+k)
1+2θ and θ > 3

2 , by the properties of the function h(t), there exists a unique

β0 > 0 such that N < h(t), t > β0. From this, letting R → +∞ in (2.19), we get a contradiction.

Clearly, β0 may be deduced from the equation N = h(q), which is given in (1.17).

If N = 2 + 4(2+k)
1+2θ and θ > 3

2 , note that h(t) > h( 4
2θ−3 ) = 2 + 4(2+k)

1+2θ , t > 4
2θ−3 , we have

N < h(t), t > 4
2θ−3 . From this, letting R → +∞ in (2.19), we get a contradiction.

Assume now 2+ 4(2+k)
1+2θ < N < 2+ (1+

√
1+2θ)(2+k)

2θ and θ > 3
2 , by the properties of the function

h(t), there exist β1,2 > 4
2θ−3 such that N < h(t) for β1 < t < β2. From this, letting R → +∞ in

(2.19), we get a contradiction. Clearly, β1,2 may be deduced from the equation N = h(q), which

is given in (1.18). The proof of Theorem 1.6 is completed. 2
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