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Abstract In this paper, the differentiability of interval valued function is discussed by using

the idea of total differential of real valued function, the concept of D-differentiability of interval

valued function is established and some basic properties are given. By discussing the optimality

condition of unconstrained interval programming, the necessary conditions for obtaining the

optimal solution of a class of constrained interval valued programming with real valued function

constraints are given. Meanwhile, the sufficient conditions for obtaining the optimal solution are

given for the convex interval value programming problem with real value function constraints.
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1. Introduction

Since the operation theory of interval number was firstly proposed in 1966 by Moore [1], the

interval number theory and its application have been improved greatly with a lot of researchers’

effort. Specially, various concepts of differentiability about interval valued function on the foun-

dation of optimal theory and differential equation theory [2–9] of interval valued function are

imported.

There are two methods to define the differentiability of interval valued function. The first one

is H-derivative which is given by H-difference from the nonempty subset in real number space

to the interval valued function in interval number space, and H-partial derivative which is given

from the subset in n-dimensional Euclid space to the interval valued function in interval number

space [8–10]. The second one is gH-derivative which is given by gH-difference from the nonempty

subset in real number space to the interval valued function in interval number space, and gH-

partial derivative which is given from the subset in n-dimensional Euclid space to the interval

valued function in interval number space [8, 9]. These concepts of differentiability only concern

about the changing rate of interval valued function in axis direction rather than other special
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direction. We built the concepts of H(gH)-directional differential and derivative in [11,12], and

proved that H(gH)-derivative and H(gH)-partial derivative are directional derivatives in axis

direction. At the same time, we introduced the concepts ofD-directional derivative andD-partial

derivative in order to avoid the troubles brought by the difference between interval numbers. We

discussed the relationship between H-directional differential and D-directional differential, and

proved that H-directional differential leads to D-directional differential, whose reverse is not

always true by using example.

The optimal theory has wide applications as an important branch of mathematics. Because

of the uncertainty of some data and information, we use the interval number to express the

variation range of data or information in math programming [13–16]. KKT optimal condition,

which plays an important role in the field of optimal theory, has been researched for more than

one century. Wu studied the KKT optimal condition of convex interval valued programming

whose constrained condition is real valued function under the condition of H-differential [7–9].

Sing, Dar and Goyal [17] proposed the KKT condition of optimal problem whose target function

and constrained function are both interval valued function. Chalco-Cano, Lodwick and Rufian-

Lizana [18] and Singh, Dar and Kim [19] studied the KKT optimal condition of convex interval-

valued optimal problems whose constrained function is real valued function. Zhang, Liu, Li and

Feng [20] studied the KKT optimal condition of non-convex interval-valued optimal problem.

We are inspired by [21,22] and introduce the concept ofD-differentiability to avoid the difficul-

ty brought by the difference of interval number. D-differentiability allows us to discuss the KKT

optimal condition of interval-valued optimal problem and enriches the theory of interval-valued

function. In Section 3, we build the concepts of D-differentiability and its gradient and pro-

pose the operation properties and characterization of D-differentiable interval-valued function.

In Section 4, we discuss the optimal condition of unconstrained interval-valued programming

whose target function is D-differentiable. In Section 5, we discuss the KKT condition of con-

strained interval-valued programming whose target function is D-differentiable. We also discuss

the optimal condition of interval-valued programming whose constrained condition is real valued

function.

2. Preliminary

We denote by [R] the set of all closed and bounded intervals in real line R , i.e.,

[R] = {a = [a, a]|a, a ∈ R, a ≤ a}.

Let M be a nonempty subset in n-dimensional Euclid space Rn. A mapping F : M → [R] is
called the interval valued function. In this case F (x) = [F (x), F (x)], where F and F are real

valued functions defined on M satisfying F (x) ≤ F (x) for any x ∈ M .

For a = [a, a], b = [b, b] ∈ [R] and k ∈ R (k ≥ 0), we define the operations of addition,

multiplication, scalar multiplication and partial ordering of interval numbers [9, 21]:

(1) a+ b = [a+ b, a+ b] = [a+ b, a+ b];

(2) ab = [ab, ab] = [min
{
ab, ab, ab, ab

}
,max

{
ab, ab, ab, ab

}
];
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(3) ka = [ka, ka];

(4) a ≤ b ⇔ a ≤ b and a ≤ b;

(5) a < b ⇔ a < b and a < b.

For a = [a, a], b = [b, b] ∈ [R], define DH(a, b) = max
{
|a− b| ,

∣∣a− b
∣∣}, then ([R], DH) is a

complete metric space. And for a, b, c ∈ [R] and k ∈ R , the following properties hold:

DH(a+ c, b+ c) = DH(a, b), DH(ka, kb) = |k|DH(a, b).

For ai ∈ [R] (i = 1, 2, . . . n), we define a = (a1, a2, . . . , an) as n-dimensional interval valued

vector in [R]. Let [R]n denote the set of all n-dimensional interval valued vectors in [R]. For

a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ [R]n; x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn,

we define the following operations:

(1) a+ b = (a1 + b1, a2 + b2, . . . , an + bn);

(2) kx = (kx1, kx2, . . . , kxn)(k ≥ 0);

(3) ⟨x, a⟩ =
∑n

i=1 xiai, ⟨x, a⟩ = ⟨x, a⟩ =
∑n

i=1 xiai, ⟨x, a⟩ = ⟨x, a⟩ =
∑n

i=1 xiai, where

xi ≥ 0, i = 1, 2, . . . , n; a = (a1, a2, . . . , an), a = (a1, a2, . . . , an) ∈ Rn, ⟨x, y⟩ =
∑n

i=1 xiyi.

Definition 2.1 ([8,10]) Let a, b ∈ [R]. If there exists c ∈ [R] such that a = b+ c, then c is called

the Hukuhara difference (H-difference) between a and b, denoted as c = a− Hb.

Proposition 2.2 ([12]) Let a, b ∈ [R]. If H-difference a−H b exists, then

DH(a, b+ c) = DH(a−Hb, c).

In this paper, for y ∈ Rn, the unit vector of y is denoted as yε.

Definition 2.3 ([12]) Let F : M → [R] be an interval valued function. For x ∈ M and y ∈ Rn,

if there exits δ > 0 such that x + hye ∈ M (x− hye ∈ M) for any h ∈ (0, δ), and there exists

a+ ∈ [R] (a− ∈ [R]) such that

lim
h→0+

DH(F (x+ hye), F (x) + ha+)

h
= 0, lim

h→0+

DH(F (x), F (x− hye) + ha−)

h
= 0,

then F is right (left) D-differentiable in direction y at x, a+ (a− ) is the right (left) D-derivative

of in directiony at x, and denoted as FD
+ (x, y) = a+(F

D
− (x, y) = a−).

If FD
+ (x, y) = FD

− (x, y), then we say that F isD-differentiable in direction y at x, and denoted

as FD(x, y) = FD
+ (x, y) = FD

− (x, y). And FD(x, y) is called the D-directional derivative of F in

direction y at x.

Definition 2.4 ([2, 8]) Let F : M → ([R], DH) be an interval valued function and

x0 = (x0
1, . . . , x

0
n) ∈ M.

If F is H-differentiable at x0, then the gradient ∇F (x0) of F at x0 is defined by

∇F (x0) = ((∂F/∂x1)(x0), (∂F/∂x2)(x0), . . . , (∂F/∂xn)(x0)).

In this paper, we denote the gradient given in Definition 2.4 by ∇FH(x0).
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Definition 2.5 ([16]) Let M be a nonempty convex subset of Rn and F be an interval valued

function on M . We say that F is convex on M if

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y)

for any x, y ∈ M and λ ∈ [0, 1].

It is easy to obtain that F is convex interval valued function on M if and only if F and F

are both convex real valued function on M in [16, Proposition 2.2].

Lemma 2.6 ([23])(Gordan Theorem) Let A be an m× n matrix. The inequality Ax < 0 has a

solution if and only if there is nonzero and non-negative y ∈ R such that AT y = 0.

3. Differentiability of interval valued function

For x0 = (x0
1, x

0
2, . . . , x

0
n) , x = (x1, x2, . . . , xn) ∈ Rn , let

(x− x0)+ = ((x1 − x0
1)

+
, (x2 − x0

2)
+
, . . . , (xn − x0

n)
+
),

(x− x0)− = ((x1 − x0
1)

−
, (x2 − x0

2)
−
, . . . , (xn − x0

n)
−
),

where

(xi − x0
i )

+ =

{
xi − x0

i , xi ≥ x0
i

0, xi < x0
i

(i = 1, 2, . . . , n),

(xi − x0
i )

− =

{
x0
i − xi, xi ≤ x0

i

0, xi > x0
i

(i = 1, 2, . . . , n).

Then

x− x0 = (x− x0)+ − (x− x0)−

and for λ ≥ 0, we have

λ(x− x0)+ = (λ(x− x0))+, λ(x− x0)− = (λ(x− x0))−.

Definition 3.1 Let F : M → ([R], DH) be an interval valued function,

x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ intM.

If there exists a = (a1, a2, . . . , an) ∈ [R]n such that

lim
x→x0

DH(F (x) + ⟨(x− x0)
−
, a⟩, F (x0) + ⟨(x− x0)

+
, a⟩)

d(x, x0)
= 0

for any x = (x1, x2, . . . , xn) ∈ M , then F is D-differentiable at x0, and (a1, a2, . . . , an) is the

D-gradient of F at x0 which is denoted as ∇FD(x0) = (a1, a2, . . . , an).

Example 3.2 The interval valued function F : M → ([R], DH) is defined by

F (x) = [∥x∥2 − 1, ∥x∥2 + 1], x = (x1, x2, . . . , xn) ∈ Rn.
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Since f(x) = ∥x∥2 is a differentiable function from Rn to R and f ′
i(x) = 2xi (i = 1, 2, . . . , n),

for x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ Rn, we have

f(x) = f(x0) +

n∑
i=1

2x0
i (xi − x0

i ) + o(d(x, x0))

i.e.,

lim
x→x0

∥x∥2 − ∥x0∥2 − 2
∑n

i=1 (xi − x0
i )x

0
i

d(x, x0)
= 0.

On the other hand,

n∑
i=1

(xi − x0
i )

−
2x0

i −
n∑

i=1

(xi − x0
i )

+
2x0

i = −2
n∑

i=1

(xi − x0
i )x

0
i .

Let x̃0
i = [x0

i , x
0
i ] ∈ [R] (i = 1, 2, . . . , n). Then 2x̃0 = (2x̃0

1, 2x̃
0
2, . . . , x̃

0
n) ∈ [R]n and∣∣∣F (x) + ⟨(x− x0)

−
, 2x̃0⟩ − F (x0) + ⟨(x− x0)

+
, 2x̃0⟩

∣∣∣
=

∣∣∣F (x)− F (x0) + ⟨(x− x0)
−
, 2x̃0⟩ − ⟨(x− x0)

+
, 2x̃0⟩

∣∣∣
=

∣∣∣F (x)− F (x0) + ⟨(x− x0)
−
, 2x̃0⟩ − ⟨(x− x0)

+
, 2x̃0⟩

∣∣∣
=

∣∣∣F (x)− F (x0) + ⟨(x− x0)
−
, 2x0⟩ − ⟨(x− x0)

+
, 2x0⟩

∣∣∣
=

∣∣∣∣∣∥x∥2 − ∥x0∥2 − 2
n∑

i=1

(xi − x0
i )x

0
i

∣∣∣∣∣.
Similarly, we can obtain that∣∣∣F (x) + ⟨(x− x0)

−
, 2x̃0⟩ − F (x0) + ⟨(x− x0)

+
, 2x̃0⟩

∣∣∣ = ∣∣∣∥x∥2 − ∥x0∥2 − 2

n∑
i=1

(xi − x0
i )x

0
i

∣∣∣.
Thus we have

lim
x→x0

DH(F (x) + ⟨(x− x0)
−
, 2x̃0⟩, F (x0) + ⟨(x− x0)

+
, 2x̃0⟩)

d(x, x0)

= lim
x→x0

max
{∣∣∣∥x∥2 − ∥x0∥2 − 2

∑n
i=1 (xi − x0

i )x
0
i

∣∣∣ , ∣∣∣∥x∥2 − ∥x0∥2 − 2
∑n

i=1 (xi − x0
i )x

0
i

∣∣∣}
d(x, x0)

= lim
x→x0

∣∣∣∥x∥2 − ∥x0∥2 − 2
∑n

i=1 (xi − x0
i )x

0
i

∣∣∣
d(x, x0)

= 0.

According to Definition 3.1, F is D-differentiable at x0, and ∇FD(x0) = (2x̃0
1, 2x̃

0
2, . . . , 2x̃

0
n).

Theorem 3.3 Let F : M → ([R], DH) be an interval valued function, x0 = (x0
1, x

0
2, . . . , x

0
n) . If

F is D-differentiable at x0, and for any y = (y1, y2, . . . , yn) ∈ Rn\ {0}, the H-difference

⟨y+e ,∇FD(x0)⟩−H⟨y−e ,∇FD(x0)⟩

exists, then FD(x0, y) exists and FD(x0, y) = ⟨y+e ,∇FD(x0)⟩−H⟨y−e ,∇FD(x0)⟩.
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Proof For y ∈ Rn\ {0}, we have ye = (y1e, y2e, . . . , yne) ∈ Rn\ {0}. Thus there exists δ > 0

such that x0 + hye, x0 − hye ∈ M , for any h ∈ (0, δ) and x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ intM .

Denote x = (x1, x2, . . . , xn) = x0 + hye, then we have x → x0(h → 0+),

hyie = xi − x0
i (yie =

yi
∥y∥

, i = 1, 2, . . . , n), d(x, x0) =

√√√√ n∑
i=1

(hyie)
2
= h∥ye∥ = h.

Let F be D-differentiable at x0 , ∇FD(x0) = (a1, a2, . . . , an) and H-difference

⟨y+e ,∇FD(x0)⟩−H⟨y−e ,∇FD(x0)⟩

exist. Then

lim
h→0+

DH(F (x0 + hye), F (x0) + h(⟨y+e ,∇FD(x0)⟩−H⟨y−e ,∇FD(x0)⟩))
h

= lim
h→0+

DH(F (x0 + hye) + h⟨y−e ,∇FD(x0)⟩, F (x0) + h⟨y+e ,∇FD(x0)⟩)
h

= lim
x→x0

DH(F (x) + ⟨(x− x0)
−
,∇FD(x0)⟩, F (x0) + ⟨(x− x0)

+
,∇FD(x0)⟩)

d(x0, x)

= 0.

So FD
+ (x0, y) exists, and

FD
+ (x0, y) = ⟨y+e ,∇FD(x0)⟩−H⟨y−e ,∇FD(x0)⟩.

Likewise we denote x = (x1, x2, . . . , xn) = x0 − hye, then x → x0 (h → 0+),

hyie = x0
i − xi (i = 1, 2, . . . , n), d(x, x0) =

√√√√ n∑
i=1

(hyie)
2
= h∥ye∥ = h.

We can also obtain the existence of FD
− (x0, y) and

FD
− (x0, y) = ⟨y+e ,∇FD(x0)⟩−H⟨y−e ,∇FD(x0)⟩.

Therefore, FD(x0, y) exists and

FD(x0, y) = ⟨y+e ,∇FD(x0)⟩−H⟨y−e ,∇FD(x0)⟩. �

Corollary 3.4 Let F : M → ([R], DH) be an interval valued function, x0 = (x0
1, x

0
2, . . . , x

0
n) . If

F is D-differentiable at x0, and∇FD(x0) = (a1, a2, . . . , an), then FD(x0, ei) = ai (i = 1, 2, . . . , n).

Proof Let y = ei (i = 1, 2, . . . , n) in Theorem 3.3. Then

⟨y+e ,∇FD(x0)⟩−H⟨y−e ,∇FD(x0)⟩ = ⟨ei,∇FD(x0)⟩−H⟨0,∇FD(x0)⟩ = ai ∈ [R].

Thus FD(x0, ei) = ai (i = 1, 2, . . . , n). �
By using Corollary 3.4 and Theorem 3.3 and Example 3.2, we can obtain the following

corollary.

Corollary 3.5 Let F : M → ([R], DH) be an interval valued function, x0 = (x0
1, x

0
2, . . . , x

0
n).

Then
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(1) If F is H-differentiable at x0, then F is D-differentiable at x0, and ∇FD(x0) = ∇FH(x0).

(2) If F is D-differentiable at x0, then F is not necessarily H-differentiable at x0.

Theorem 3.6 Let F, G : M → ([R], DH) be two interval valued functions. If F and G are

D-differentiable at x0 ∈ intM , then λF (λ > 0) and F +G are D-differentiable at x0, and

∇(λF )D(x0) = λ∇FD(x0), ∇(F +G)D(x0) = ∇FD(x0) +∇GD(x0).

Proof (1) Let F be D-differentiable at x0. Then for any x = (x1, x2, . . . , xn) ∈ M , there exists

a = (a1, a2, . . . , an) ∈ [R]n such that

lim
x→x0

DH(F (x) + ⟨(x− x0)
−
, a⟩, F (x0) + ⟨(x− x0)

+
, a⟩)

d(x, x0)
= 0.

And for any λ > 0,

lim
x→x0

DH(λF (x) + ⟨(x− x0)
−
, λa⟩, λF (x0) + ⟨(x− x0)

+
, λa⟩)

d(x, x0)

= lim
x→x0

λDH(F (x) + ⟨(x− x0)
−
, a⟩, F (x0) + ⟨(x− x0)

+
, a⟩)

d(x0, x)
= 0.

Therefore,

∇(λF )D(x0) = (λa1, λa2, . . . , λan) = λ(a1, a2, . . . , an) = λ∇FD(x0).

(2) Denote ∇FD(x0) = (a1, a2, . . . , an), ∇GD(x0) = (b1, b2, . . . , bn), then

lim
x→x0

DH(F (x) + ⟨(x− x0)
−
, a⟩, F (x0) + ⟨(x− x0)

+
, a⟩)

d(x0, x)
= 0,

lim
x→x0

DH(G(x) + ⟨(x− x0)
−
, b⟩, G(x0) + ⟨(x− x0)

+
, b⟩)

d(x0, x)
= 0.

According to

0 ≤ lim
x→x0

DH((F +G)(x) + ⟨(x− x0)
−
, a+ b⟩, (F +G)(x0) + ⟨(x− x0)

+
, a+ b⟩)

d(x0, x)

≤ lim
x→x0

DH(F (x) + ⟨(x− x0)
−
, a⟩, F (x0) + ⟨(x− x0)

+
, a⟩)

d(x0, x)
+

lim
x→x0

DH(G(x) + ⟨(x− x0)
−
, b⟩, G(x0) + ⟨(x− x0)

+
, b⟩)

d(x0, x)
= 0,

we can obtain that

lim
x→x0

DH((F +G)(x) + ⟨(x− x0)
−
, a+ b⟩, (F +G)(x0) + ⟨(x− x0)

+
, a+ b⟩)

d(x0, x)
= 0.

Thus F +G is also D-differentiable at x0, and

∇(F +G)D(x0)= (a1 + b1, a2 + b2, . . . , an + bn)

= (a1, a2, . . . , an) + (b1, b2, . . . , bn)

= ∇FD(x0) +∇GD(x0). �
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Theorem 3.7 Let F : M → ([R], DH) be an interval valued function, x0 = (x0
1, x

0
2, . . . , x

0
n),

a = (a1, a2, . . . , an) ∈ [R]n. Then

∇FD(x0) = (a1, a2, . . . , an) ⇔

{
∇F (x0) = ∇FD(x0) = (a1, a2, . . . , an)

∇F (x0) = ∇FD(x0) = (a1, a2, . . . , an)
.

Proof Let ∇FD(x0) = (a1, a2, . . . , an) . Then

lim
x→x0

DH(F (x) + ⟨a, (x− x0)
−⟩, F (x0) + ⟨a, (x− x0)

+⟩)
d(x, x0)

= 0

⇔ lim
x→x0

max


|F (x)+

∑n
i=1 (xi−x0

i )
−
ai−F (x0)−

∑n
i=1 (xi−x0

i )
+
ai|

d(x,x0) ,

|F (x)+
∑n

i=1 (xi−x0
i )

−
ai−F (x0)−

∑n
i=1 (xi−x0

i )
+
ai|

d(x,x0)

 = 0

⇔


lim

x→x0

|F (x)−F (x0)−
∑n

i=1 (xi−x0
i )ai|

d(x,x0) = 0

lim
x→x0

|F (x)−F (x0)−
∑n

i=1 (xi−x0
i )ai|

d(x,x0) = 0

⇔

{
F (x)− F (x0)−

∑n
i=1 (xi − x0

i )ai = o(d(x, x0))

F (x)− F (x0)−
∑n

i=1 (xi − x0
i )ai = o(d(x, x0))

⇔

{
∇F (x0) = (a1, a2, . . . , an)

∇F (x0) = (a1, a2, . . . , an)
. �

Corollary 3.8 Let F : M → ([R], DH) be an interval valued function. If F is D-differentiable

at x0 ∈ M , then

F (x) + ⟨∇FD(x0), (x− x0)
−⟩ = F (x0) + ⟨∇DF (x0), (x− x0)

+⟩+ õ(∥x− x0∥),

where õ(∥x− x0∥) = [o(∥x− x0∥), o(∥x− x0∥)].

Proof Let F be D-differentiable at x0 ∈ M . According to Definition 3.1, there exists

a = (a1, a2, . . . , an) ∈ [R]n

such that

lim
x→x0

DH(F (x) + ⟨a, (x− x0)
−⟩, F (x0) + ⟨a, (x− x0)

+⟩)
d(x, x0)

= 0.

According to the proof of Theorem 3.7, we have

F (x) + ⟨a, (x− x0)
−⟩ = F (x0) + ⟨a, (x− x0)

+⟩+ o(d(x, x0)),

F (x) + ⟨a, (x− x0)
−⟩ = F (x0) + ⟨a, (x− x0)

+⟩+ o(d(x, x0)).

Therefore,

F (x) + ⟨∇FD(x0), (x− x0)
−⟩ = F (x0) + ⟨∇FD(x0), (x− x0)

+⟩+ õ(d(x, x0)). �

Theorem 3.9 Let M ⊂ Rn be an convex open set in Rn, and F : M → ([R], DH) be a

D-differentiable interval valued function. Then F is convex function if and only if

F (x) + ⟨∇FD(y), (x− y)
−⟩ ≥ F (y) + ⟨∇FD(y), (x− y)

+⟩,
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for any x, y ∈ M .

Proof Necessary. Let F : M → ([R], DH) be a D-differentiable convex interval valued function.

For x ∈ M , ∇FD(x) = (a1, a2, . . . , an) ∈ [R]n, according to Definition 2.5 we can obtain that

F (x) and F (x) are both differentiable convex real valued functions on M . And by Theorem 3.7

we have

∇F (x) = (a1, a2, . . . , an), ∇F (x) = (a1, a2, . . . , an).

Thus by using the properties of convex real valued function, we can obtain that

F (x) ≥ F (y) + ⟨∇F (x), x− y⟩, F (x) ≥ F (y) + ⟨∇F (x), x− y⟩.

This implies that

F (x) + ⟨∇F (x), (x− y)
−⟩ ≥ F (y) + ⟨∇F (x), (x− y)

+⟩,

F (x) + ⟨∇F (x), (x− y)
−⟩ ≥ F (y) + ⟨∇F (x), (x− y)

+⟩.

Therefore

F (x) + ⟨∇FD(x), (x− y)
−⟩ ≥ F (y) + ⟨∇FD(y), (x− y)

+⟩.

Sufficiency. Let

F (x2) + ⟨∇FD(x1), (x2 − x1)
−⟩ ≥ F (x1) + ⟨∇FD(x1), (x2 − x1)

+⟩,

for any x1, x2 ∈ M . And for λ ∈ (0, 1), taking y = λx1 + (1 − λ)x2, we know y ∈ M . Thus for

x1, x2, y ∈ M , we have

F (x1) + ⟨∇FD(y), (x1 − y)
−⟩ ≥ F (y) + ⟨∇FD(y), (x1 − y)

+⟩, (3.1)

F (x2) + ⟨∇FD(y), (x2 − y)
−⟩ ≥ F (y) + ⟨∇FD(y), (x2 − y)

+⟩. (3.2)

By (3.1) and (3.2), we have

F (x1) ≥ F (y) + ⟨∇F (y), x1 − y⟩, (3.3)

F (x1) ≥ F (y) + ⟨∇F (y), x1 − y⟩, (3.4)

and

F (x2) ≥ F (y) + ⟨∇F (y), x2 − y⟩, (3.5)

F (x2) ≥ F (y) + ⟨∇F (y), x2 − y⟩. (3.6)

Hence, considering the sum of formula (3.3) multiplied by λ and formula (3.5) multiplied by

(1− λ), we have

λF (x1) + (1− λ)F (x2) ≥ F (y) + ⟨∇F (y), λx1 + (1− λ)x2 − y⟩

= F (y) = F (λx1 + (1− λ)x2). (3.7)

Similarly, considering the sum of formula (3.4) multiplied by λ and formula (3.6) multiplied by

1− λ, we obtain

λF (x1) + (1− λ)F (x2) ≥ F (λx1 + (1− λ)x2). (3.8)
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According to (3.7) and (3.8),

λF (x1) + (1− λ)F (x2) ≥ F (λx1 + (1− λ)x2).

So F is a convex interval valued function on M . �

4. Optimality conditions for unconstrained interval valued programming

If F : M → ([R], DH) is an interval valued function, the following problem

(INP) minF (x), x ∈ M

is called the unconstrained interval valued programming problems. Set M is called the feasible

set, and point x ∈ M is called the feasible solution.

Since “≤ ” and “<” are both partial ordering on [R], we may quote some concepts of solution

in multi-objective programming problems.

If x ∈ M and there exists no x(̸= x) ∈ M such that F (x) ≤ F (x), we call x the global

optimal solution of interval valued programming problem (INP) on M . If there exists an ε−
neighborhood N(x, ε) around x such that there exists no x( ̸= x) ∈ N(x, ε) ∩ M which allows

F (x) ≤ F (x), we call x the local optimal solution of interval valued programming problem (INP)

on M .

Theorem 4.1 Let F : M → ([R], DH) be a D-differentiable interval valued function at x. If

there exists direction d ∈ Rn such that

⟨∇FD(x), d+⟩ < ⟨∇FD(x), d−⟩,

then there exists δ > 0 such that F (x+ λd) < F (x) for any λ ∈ (0, δ).

Proof If F is D-differentiable at x, according to Corollary 3.8, we have

F (x+ λd) + ⟨∇FD(x), (λd)
−⟩ = F (x) + ⟨∇FD(x), (λd)

+⟩+ õ(∥λd∥).

Thus we have

F (x+ λd) + λ⟨∇F (x), d−⟩ = F (x) + λ⟨∇F (x), d+⟩+ o(∥λd∥),

F (x+ λd) + λ⟨∇F (x), d−⟩ = F (x) + λ⟨∇F (x), d+⟩+ o(∥λd∥),

i.e.,

F (x+ λd) = F (x) + λ[⟨∇F (x), d⟩+ o(∥λd∥)
λ

], (4.1)

F (x+ λd) = F (x) + λ[⟨∇F (x), d⟩+ o(∥λd∥)
λ

]. (4.2)

According to ⟨∇FD(x), d+⟩ < ⟨∇FD(x), d−⟩, we have

⟨∇F (x), d+⟩ − ⟨∇F (x), d−⟩ = ⟨∇F (x), d+ − d−⟩ = ⟨∇F (x), d⟩ < 0,

⟨∇F (x), d+⟩ − ⟨∇F (x), d−⟩ = ⟨∇F (x), d+ − d−⟩ = ⟨∇F (x), d⟩ < 0.
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And by limλ→0
∥λd∥
λ = 0, we can obtain that there exists δ > 0 such that

λ[⟨∇FD(x), d⟩+ o(∥λd∥)
λ

] < 0, λ[⟨∇FD(x), d⟩+ o(∥λd∥)
λ

] < 0

for any λ ∈ (0, δ). Thus by (4.1) and (4.2) we have

F (x+ λd) < F (x), F (x+ λd) < F (x).

So there exists δ > 0 such that F (x+ λd) < F (x) for any λ ∈ (0, δ). �

Theorem 4.2 Let F : M → ([R], DH) be a D-differentiable convex interval valued function,

and x ∈ M . If ∇FD(x) = 0, then x is the global optimal solution.

Proof Let F : M → ([R], DH) be a D-differentiable interval valued function and ∇FD(x̄) = 0.

Then for any x ∈ M , we have

⟨∇FD(x), (x− x)
−⟩ = ⟨∇FD(x), (x− x)

+⟩ = 0.

According to Theorem 3.9 we have

F (x) = F (x) + ⟨∇FD(x), (x− x)
−⟩ ≥ F (x) + ⟨∇FD(x), (x− x)

+⟩ = F (x).

So x is the global optimal solution. �

Definition 4.3 Let F : M → ([R], DH) be a D-differentiable interval valued function, and

d ∈ Rn be a nonzero vector. We say that d is the descent direction of F at x if there exists δ > 0

such that F (x+ λd) < F (x) for λ ∈ (0, δ).

According to Theorem 4.1, d is the descent direction of F at x if F is D-differentiable and

⟨∇FD(x), d+⟩ < ⟨∇FD(x), d−⟩ . And the set of all descent directions of F at x is denoted as

MF =
{
d| ⟨∇FD(x), d+⟩ < ⟨∇FD(x), d−⟩, d ∈ Rn, d ̸= 0

}
. (4.3)

Definition 4.4 Let M ⊂ Rn be a closed set and d ∈ Rn be a nonzero vector, x ∈ M . Then d

is the feasible direction of M at x if there exists δ > 0 such that x+ λd ∈ M for any λ ∈ (0, δ).

Set of all the feasible directions of M at x is denoted as

DM = {d| d ̸= 0,∃δ > 0, ∀λ ∈ (0, δ), x+ λd ∈ M} . (4.4)

We call it the cone of feasible direction of M at x.

Theorem 4.5 Let F be a D-differentiable interval valued function at x in an interval valued

programming problem (INP). If x is local optimal solution, then MF ∩DM = ∅.

Proof Suppose that there exists nonzero vector d ∈ MF ∩ DM , then d ∈ MF and d ∈ DM .

According to (4.3) we have

⟨∇FD(x), d+⟩ < ⟨∇FD(x), d−⟩.

So according to Theorem 4.1, there exists δ > 0 such that

F (x+ λd) < F (x) for any λ ∈ (0, δ1). (4.5)
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On the other hand, according to (4.4), there exists δ2 > 0 such that

x+ λd ∈ M for any λ ∈ (0, δ2). (4.6)

Let δ = min{δ1, δ2}. When λ ∈ (0, δ), both (4.5) and (4.6) are established, which contradicts

that x is the local optimal solution. So MF ∩DM = ∅. �

5. Optimality condition for constrained interval valued programming

Let F : M → ([R], DH) be an interval valued function, Gi : Rn → R (i = 1, 2, . . . ,m) be real

valued function. Then

(MINP)

{
minF (x)

Gi(x) ≤ 0, i = 1, 2, . . . ,m

is called the constrained interval valued programming problem. Set

M = {x|Gi(x) ≤ 0, i = 1, 2, . . . ,m}

is called the feasible set or the feasible field. Point x ∈ M is called the feasible solution.

The constrained conditions which satisfy Gi(x) < 0 is called the inactive constraint at x.

On the other hand, those which satisfy Gi(x) = 0 is called the active constraint at x. Let

I = { i|Gi(x) = 0}. Then when Gi is differentiable real valued function,

GI = {d|⟨Gi(x), d⟩ < 0, i ∈ I},

which can take place of the cone of directions DM in Theorem 4.5.

Theorem 5.1 Suppose that x ∈ M , F is D-differentiable, Gi (i ∈ I) is differentiable at x,

and Gi (i /∈ I) is continuous at x. If x is the optimal solution of interval valued programming

problem (MINP), then MF ∩GI = ∅.

Proof According to Theorem 4.5, MF ∩DM = ∅ at x.

Next we prove that GI ⊂ DM . Let the direction d ∈ GI . Then we have

⟨∇Gi(x), d⟩ < 0. (5.1)

Take Hi(x) = Gi(x), Hi(x) = Gi(x). Then interval valued function

Hi : M → ([R], DH)

is D-differentiable at x, and

∇Hi(x) = ∇Hi(x) = ∇Gi(x).

Thus by (4.7) we have

⟨∇Hi(x), d
+⟩ − ⟨∇Hi(x), d

−⟩ = ⟨∇Hi(x), d
+⟩ − ⟨∇Hi(x), d

−⟩

= ⟨∇Gi(x), d
+⟩ − ⟨∇Gi(x), d

−⟩ = ⟨∇Gi(x), d
+ − d−⟩ = ⟨∇Gi(x), d⟩ > 0.

That is ⟨∇Hi(x), d
+⟩ > ⟨∇Hi(x), d

−⟩ .
Likewise we can obtain ⟨∇Hi(x), d

+⟩ > ⟨∇Hi(x), d
−⟩. So ⟨∇HD

i (x), d+⟩ > ⟨∇HD
i (x), d−⟩.
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On the other hand, by Theorem 4.1, there exists δ1 > 0 such that

Hi(x+ λd) < Hi(x), i ∈ I for any λ ∈ (0, δ1).

So Gi(x+ λd) < Gi(x) = 0 (i ∈ I). Since Gi(x) < 0 when i /∈ I, by the continuity of Gi (i /∈ I)

at x, there exists δ2 > 0 such that Gi(x+ λd) < 0 (i = 1, 2, . . . , n) for λ ∈ (0, δ2).

Take δ = min{δ1, δ2}. Then Gi(x+ λd) < 0 (i = 1, 2, . . . ,m) for λ ∈ (0, δ). That is x+ λd ∈
M . According to Definition 4.4 we have d ∈ DM . So GI ⊂ DM . Thus MF ∩GI = ∅. �

Theorem 5.2 Let x ∈ M , F be D-differentiable, Gi (i ∈ I) be differentiable at x, and

Gi (i /∈ I) be continuous at x. If x is local optimal solution of interval valued programming

problem (MINP), then there exists non-negative real number families ω0, ωi, ω0, ωi, i ∈ I which

are not all zero such that

ω0∇F (x)+
∑
i∈I

ωi∇Gi(x) = 0, ω0∇F (x) +
∑
i∈I

ωi∇Gi(x) = 0.

Proof Let x be a local optimal solution of (MINP). Then according to Theorem 5.1 we have

MF ∩GI = ∅, i.e., the following inequality systems{
⟨∇Gi(x), d⟩ < 0

⟨∇F (x), d⟩ < 0
and

{
⟨∇Gi(x), d⟩ < 0

⟨∇F (x), d⟩ < 0

are both unsolvable. According to Lemma 2.1 we can obtain that there exists nonzero vector

ω = (ω0, ωi, i ∈ I) ≥ 0, ω = (ω0, ωi, i ∈ I) ≥ 0

such that

ω0∇F (x) +
∑
i∈I

ωi∇Gi(x) = 0, ω0∇F (x) +
∑
i∈I

ωi∇Gi(x) = 0. �

Theorem 5.3 (KKT condition) Let x ∈ M , F be D-differentiable, Gi (i ∈ I) be differentiable

at x, Gi (i /∈ I) be continuous at x, and {∇Gi(x)| i ∈ I} be linearly independent. If x is a local

optimal solution of (MINP), then there exists two non-negative arrays ωi (i ∈ I) and ωi (i ∈ I)

such that

∇F (x) +
∑
i∈I

ωi∇Gi(x) = 0, ∇F (x) +
∑
i∈I

ωi∇Gi(x) = 0.

Proof Let x be a local optimal solution of (MINP). Then according to Theorem 5.2 we can obtain

that there exists two different non-negative real number families ω0, ω
′
i (i ∈ I) and ω0, ω

′
i (i ∈ I)

such that

ω0∇F (x) +
∑
i∈I

ω′
i∇Gi(x) = 0, ω0∇F (x) +

∑
i∈I

ω′
i∇Gi(x) = 0.

Considering {∇Gi(x)| i ∈ I} is linearly independent, we know ω0 ̸= 0 and ω0 ̸= 0 (otherwise,

{∇Gi(x)| i ∈ I} would be linearly dependent because ω′
i (i ∈ I) and ω′

i (i ∈ I) are not all zero).

Therefore, take

ωi =
ω′

i

ω0

, i ∈ I, ωi =
ω′

i

ω0
, i ∈ I.
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Then ωi (i ∈ I) and ωi (i ∈ I) are two non-negative real arrays which allow

∇F (x) +
∑
i∈I

ωi∇Gi(x) = 0, ∇F (x) +
∑
i∈I

ωi∇Gi(x) = 0. �

Note 5.4 In Theorem 5.3, if Gi (i /∈ I) is differentiable at x, we can obtain the following KKT

optimal conditions 

∇F (x)−
∑m

i=1 ωi∇Gi(x) = 0,

∇F (x)−
∑m

i=1 ωi∇Gi(x) = 0,

ωiGi(x) = 0,

ωiGi(x) = 0,

ωi ≥ 0, i = 1, 2, . . . ,m,

ωi ≥ 0, i = 1, 2, . . . ,m.

(5.2)

Example 5.5 We consider the following interval valued programming problem:
minF (x1, x2) = a2 + b2,

x1 + x2 ≥ 4,

x1 ≥ 1, x2 ≥ 1,

where a = [x1 − 1, x1 + 1], b = [x2 − 1, x2 + 1] are interval numbers.

Then by using the addition and multiplication of interval numbers, we can obtain that

F (x1, x2) = [(x1 − 1)
2
+ (x2 − 1)

2
, (x1 + 1)

2
+ (x2 + 1)

2
],

G1(x1, x2) = 4− x1 − x2 ≤ 0,

G2(x1, x2) = 1− x1 ≤ 0,

G2(x1, x2) = 1− x2 ≤ 0.

So according to Theorem 3.7 we have

∇FD(x1, x2) = ([2(x1 − 1), 2(x1 + 1)], [2(x2 − 1), 2(x2 + 1)]),

∇G1(x1, x2) = (−1,−1),

∇G2(x1, x2) = (−1, 0),

∇G3(x1, x2) = (0,−1).

By (5.2), we know

(2(x1 − 1), 2(x2 − 1)) + ω1(−1,−1) + ω2(−1, 0) + ω3(0,−1) = 0,

(2(x1 + 1), 2(x2 + 1)) + ω1(−1,−1) + ω2(−1, 0) + ω3(0,−1) = 0,

ω1(x1 + x2 − 4) = ω1(x1 + x2 − 4) = 0,

ω2(x1 − 1) = ω2(x1 − 1) = 0,

ω3(x2 − 1) = ω3(x2 − 1) = 0,

ωi ≥ 0, i = 1, 2, 3,

ωi ≥ 0, i = 1, 2, 3,
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⇔



2x1 − 2− ω1 − ω2 = 0,

2x2 − 2− ω1 − ω3 = 0,

2x1 + 2− ω1 − ω2 = 0,

2x1 + 2− ω1 − ω3 = 0,

ω1(x1 + x2 − 4) = ω1(x1 + x2 − 4) = 0,

ω2(x1 − 1) = ω2(x1 − 1) = 0,

ω3(x2 − 1) = ω3(x2 − 1) = 0,

ωi ≥ 0, i = 1, 2, 3,

ωi ≥ 0, i = 1, 2, 3.

After some algebraic calculations, we can obtain that

(1) When x1= 1, ω1 = ω2= 0, ω3 = 2(x2 − 1) ≥ 0; ω1 = ω2= 0, ω3 = 2(x2 + 1) ≥ 0, x2 ≥ 3;

(2) When x2= 1, ω1 = ω3= 0, ω2 = 2(x1 − 1) ≥ 0; ω1 = ω3= 0, ω2 = 2(x1 + 1) ≥ 0, x1 ≥ 3;

(3) When x1 ̸= 1 and x2 ̸= 1,

ω2 = ω3= 0, ω1 = 2(x1 − 1) ≥ 0; ω2 = ω3= 0, ω1 = 2(x1 + 1) ≥ 0, x1 = x2, x2 ≥ 3.

i.e., the set of points which satisfy KKT conditions is three half-lines

x1= 1, x2 ≥ 3; x2= 1, x1 ≥ 3; x1 = x2, x2 ≥ 3.

Theorem 5.6 Let Gi (i = 1, 2, . . . ,m) be a convex real valued function and differentiable on

M , F be a convex interval valued function and D-differentiable on M . If x satisfies the KKT

conditions of (MINP), then x is the global optimal solution.

Proof Let F be convex interval valued function and D-differentiable at x ∈ M . Then according

to Theorem 3.9, for x ∈ M we have

F (x) + ⟨∇FD(x), (x− x)
−⟩ ≥ F (x) + ⟨∇FD(x), (x− x)

+⟩.

Therefore,

F (x) + ⟨∇F (x), (x− x)
−⟩ ≥ F (x) + ⟨∇F (x), (x− x)

+⟩,

F (x) + ⟨∇F (x), (x− x)
−⟩ ≥ F (x) + ⟨∇F (x), (x− x)

+⟩.

So

F (x) ≥ F (x) + ⟨∇F (x), x− x⟩, (5.3)

F (x) ≥ F (x) + ⟨∇F (x), x− x⟩. (5.4)

Because x satisfies the KKT conditions, i.e., there exist two non-negative real valued arrays

ωi (i ∈ I) and ωi (i ∈ I) such that

∇F (x) +
∑
i∈I

ωi∇Gi(x) = 0, (5.5)

∇F (x) +
∑
i∈I

ωi∇Gi(x) = 0. (5.6)
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Using (5.3) and (5.5) gives

F (x) ≥ F (x)−
∑
i∈I

ωi⟨∇Gi(x), x− x⟩. (5.7)

By (5.4) and (5.6), we have

F (x) ≥ F (x)−
∑
i∈I

ωi⟨∇Gi(x), x− x⟩. (5.8)

Because Gi (i = 1, 2, . . . ,m) is convex real valued function, for i ∈ I, we have

Gi(x) ≥ Gi(x) + ⟨∇Gi(x), x− x⟩.

Therefore,

⟨∇Gi(x), x− x⟩ ≤ Gi(x)−Gi(x), i ∈ I.

Thus, by Gi(x) = 0, Gi(x) ≤ 0, we can obtain

⟨∇Gi(x), x− x⟩ ≤ 0, i ∈ I.

By (5.7) and (5.8), we have

F (x) ≥ F (x), F (x) ≥ F (x).

So F (x) ≥ F (x), i.e., x is global optimal solution of (MINP). �

6. Conclusion

The concepts of the differentiability of interval valued function include H-derivative (H-

partial derivative),Hg-derivative (Hg-partial derivative),H-directional derivative (Hg-directional

partial derivative), D-directional derivative and so on. Because the H-difference does not always

exist, the generalization of H-derivative (H-partial derivative) using Hg-difference is imported

which are called Hg-derivative (Hg-partial derivative) and Hg-directional derivative.

In this paper, we introduce the concepts of D-differentiability and its gradient by using the

method of total differential of real valued function. By discussing the relationship between D-

directional differential and D-differential, we point out that the gradient under the condition of

H-differential is equal to the gradient under the condition of D-differential, but its reverse is

not always true. The optimal condition of unconstrained interval valued programming, KKT

condition and the relevant example of interval valued programming whose constrained condition

is real valued function are given under the condition of D-differential. These results are more

general than similar results under the condition ofH-differential (which are only discussed aiming

at convex interval valued programming).

In this paper, we take no account of the concept of H-difference or Hg-difference, which

provides a new method for further research on interval valued programming. At the same time,

some conclusions in this paper build a good foundation for the research of KKT condition of

interval valued programming whose constrained condition is interval valued function and the

establishment of sub-differential theory of interval valued function under the condition of D-

differential.



Differentiability of interval valued function and its application in interval valued programming 431

Acknowledgements We thank the referees for their time and comments.

References
[1] R. E. MOORE. Interval Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1966.

[2] H. C. WU. The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with

interval-valued objective functions. European J. Oper. Res., 2009, 196(1): 49–60.

[3] A. JAYSWA, I. STANCU-MINASIAN, J. BANERJEE, et al. Sufficiency and duality for optimization prob-

lems involving interval-valued invex functions in parametric form. Oper. Res., 2015, 15: 137–161.

[4] L. STEFANINI, B. BEDE. Generalized Hukuhara differentiability of interval-valued functions and interval

differential equations. Nonlinear Anal., 2009, 71(3): 1311–1328.
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