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Abstract The equitable total coloring of a graph G is a total coloring such that the numbers
of elements in any two colors differ by at most one. The smallest number of colors needed for an
equitable total coloring is called the equitable total chromatic number. This paper contributes
to the equitable total coloring of Fibonacci graphs Fa .. We determine the equitable total
chromatic numbers of Fa , for A = 3,4,5 and propose a conjecture on that for A >= 6.
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1. Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). A total k-
coloring of a graph G is a map o: V(G) U E(G) — {1,2,...,k} such that no two adjacent or
incident elements of V(G) U E(G) receive the same color. The smallest number of colors needed
for a total coloring of G is known as the total chromatic number, denoted as x”(G). Determining
total chromatic number is NP-complete [1], and NP-hard even for k-regular bipartite graphs with
k > 3 (see [2]).

A total k-coloring is said to be equitable if the numbers of elements in any two colors differ
by at most one, i.e., ||c71(i)] — |o71(5)|| < 1 for each pair of distinct colors i and j (1 < i,5 < k),
where |071(i)| denotes the number of elements in color 7. The smallest number of colors needed
for an equitable total coloring of G is specially called the equitable total chromatic number of
G, denoted as x” (G).

Fu [3] first introduced the concept of equitable total coloring and conjectured that any graph
G has an equitable total k-coloring for each k¥ > max(x"(G),A(G) +2). Wang [4] further
conjectured that x” (G) < A(G) + 2 for any graph G. These conjectures are verified by trees
[3], complete r-partite graphs [5-7], subcubic graphs [8], coronas of cubic graphs [9] and all
multigraphs G with A(G) < 3 (see [4]). Exact values of equitable total chromatic number have
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been determined for some particular classes of graphs, such as generalized Petersen graphs [10],
Knodel graphs [11], snarks [12], Cartesian product graphs [13], join graphs [14,15], and some
others [16-18]. However, the equitable total chromatic numbers for a great mass of graphs,
including Fibonacci graphs, remain open even after many efforts.

In this paper, we study the equitable total coloring of Fibonacci graphs Fa ,. We aim to
determine the equitable total chromatic numbers of Fa , for A = 3,4,5.

The paper is organized as follows. In Section 2, we recapitulate the definition of Fibonacci
graphs with examples. In Sections 3-5, we determine the equitable total chromatic numbers of

Fibonacci graphs for A = 3,4, 5, respectively. Section 6 is our conclusion.

2. Fibonacci graphs

The Fibonacci graphs Fa , are an important class of bipartite graphs. They are extensively
studied for the purpose of fast communication in networks [19-21] and deserve a lot of attention
in this context.

By definition [22,23], Fa , is a graph defined on 2n (n > 1) vertices with V/(Fa ) = {vs, u; :
0<i<n-—1}and E(Fa,) = {Uiu(i+F(j)—1) modn:0<i<n—1,1<j5< F~1(n)}, where
F(j) denotes the j-th Fibonacci number (F(0) = F(1) =1, and F(j) = F(j — 1)+ F(j — 2)
for j > 2) and F~1(n) denotes the integer j for which n > F(j). For example, A = 3, there is
V(Fsp) ={vi,u; : 0 <i<n-—1} and E(Fs,,) = {viu;,v; 0<i <
n — 1}. Figure 1 shows Fibonacci graphs F3 4 and Fs 5.

Y1) mod no Vi¥%(i42) mod n

u,

0

Figure 1 The Fibonacci graphs F3 4 and F3 5

3. Equitable total coloring of Fj,

We determine the equitable total chromatic number of F3,, in this section.
Lemma 3.1 x”(F3,) =4 forn (mod2) =0 and 5 for n (mod2) = 1.

Proof We first show xZ(F5,) = 4 for n (mod2) = 0. Let V3 = {u; : 0 < i < n — 1},
ng{vizogign—l},El:{viui:Ogign—l},Eg:{viu(iﬂ)modn:Ogign—l},

Es = {v; :0<i<n-1} and ny = n mod 4. We construct a 4-total coloring of

Uiv2) mod n
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F5,, for n (mod2) = 0 as follows:

(4231)% ng =0, (1423)4% ng =0,
o(V1) = n—o o(Va) = n-o
(4231)"7 443211 ny = 2; (1423)"% 114423 ny = 2;
(3344)% ny =0, (4132)% ny =0,
U(El) = n—6 U( 2) = n-6
(3344)77 331144 ny =2; (4132)"7 223332 ny =2;
(Es) (2211)% ny =0,
o = —
’ (2211)"7°442211 ny = 2.

Further, we calculate the numbers of each colors and have

e W) =lo7 @) =107 B) = o~ (@) = 7, ny =
e W) =lo7 (@) = 22,107 (2) = 071 (3)| = 272, nu =2,
which shows that [[c=1(i)] — o7 (4)]| <1 (1 <i<j <4) for n (mod2) = 0.
The above construction implies x” (F3 ) < 4 for n (mod2) = 0. On the other hand, by the

definition of equitable total chromatic number, there is x”’(F5 ) > 4. Hence, x”(F3,) = 4 for
n (mod2) = 0. Figure 2 shows o(F3 ) for n = 4,6.

(1)
Figure 2 o(F3,,) forn =4,6
Since F3 ,, for n (mod 2) = 1 is isomorphic to M6bius ladder M,,, of which the total chromatic

number is 5 (see [24]), the total chromatic number of Fj ,, for n (mod 2) = 1is 5 too. Furthermore,
we can construct an equitable total 5-coloring of Fj,, for n (mod2) = 1. For example, o(V;) =
(D)™, o(Va) = (2)", o(E1) = (3)™, 0(E2) = (4)™ and o(F3) = (5)™. We then have x” (F5,) =5
for n (mod2) = 1. This completes the proof of Lemma 3.1. O

4. Equitable total coloring of F},

We determine the equitable total chromatic number of Fj ,, in this section.
Lemma 4.1 xZ(F,,)=>5 forn >5 except 6,7, and 6 for the two exceptions.

Proof We first show X (Fy ) =5 for n > 5 except 6, 7. We use the same expressions of V1, V3,
E1, Es and Ej3 as those in the proof of Lemma 3.1, and let £y = {0jtu(;44) moa n : 0 <4 <n—1}

and ns =n mod 5. We construct a 5-total coloring of Fy ,, as follows:
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(53412)% ns =0,
(53412)"F 53534214112, ns =1, n#6,
o(Vi) ={ (53412)"5°535344132112, ns=2, n#7,
(53412)"5" 53415342, ns = 3,
(53412)"57 535344112, ns = 4;
(12534)%, ns = 0,
(12534)"5 11213552434, ns =1, n+#6,
o(Va) = { (12534)"5°112132453534, ns =2, n#7,
(12534)"5" 15342534, ns = 3,
(12534)"57 112553434, ns = 4;
(44341)% ns = 0,
(44341)"5 44441123541, ns =1, n#6,
o(B1) ={ (44341)"5°444411224241, n5=2, n#7,
(44341)"5" 44534451, ns = 3,
(44341)"5" 444422251, ns = 4;
(55253)% ns =0,
(55253) "5 53124414253, ns =1, n#6,
o(Ey) = ¢ (55253)"5 531225115353, n5 =2, n#7,
(55253) "5 53415243, ns = 3,
(55253) "5 531115343, ns = 4;
(23422)%, ns =0,
(23422) "5 22535235322, ns =1, n#6,
o(BE3) = { (23422)"5°225344342422, n5 =2, n#£7,
(23422) "5 22223322, ns = 3,
(23422)"5° 225344522, ns = 4;
(31115)%, ns =0,
(31115)"5 " 35352341115, ns =1, n#6,
o(Es) = ¢ (31115)"5°353553531115, ns =2, n#7,
(31115)"5 31151115, ns = 3,
(31115)*5° 353231115, ns = 4.

et W) =lo @l =e7'B) =o' @] = o7 (5)| = L, ns =0,
e (D] =252, o @) = o' @) = o7 @) = o7 (5)] = B, ms =1,
et W) =lo7 @) =252, |07 @) = o @] =071 (5)| = 52, ns =2,
et (W) =lo7 @)= 52, 0 B) = o7 @) = o7 (5)] = 2, ns =3,
e Ol =1 @) =l @] =o' (G)] = &5, 071 (2)] = 2, ns =4,

which shows that [[c71(i)] — o7 (4)|| <1 (1 <i<j<5)forn>5and n+#6,7.
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The above construction implies x” (Fy,,) < 5 for n > 5 except 6,7. On the other hand, by
the definition of equitable total chromatic number, x”.(Fy ) > 5. Hence, xZ(Fy,,) =5 forn > 5
except 6, 7. Figure 3 shows o(Fy ) for n = 8,9,10,11 and 12.

Figure 3 o(Fu,n) for n =8,9,10,11 and 12
We now prove x” (Fs) = 6. Suppose that Fy ¢ has a 5-total coloring. By [24, Lemmas 3

and 4], if Fy ¢ has a 5-total coloring, then it has a vertex 5-coloring ® with colors {1,...,5} and
1271 (5) = |85 (5)| (1 <j <5) where |®]1(j)] and @5 (j)| are the number of vertices of V; and
V4, respectively in color j. Since there are 6 vertices in both V; and V5, there must be one j such
that |®7 ()| = |®5'(4)| = 2. However, there is no independent set consisting of two vertices of
V1 and two vertices of V5 in Fy¢. This is a contradiction. Thus, x”(Fy¢) > 6. Furthermore,
we can construct an equitable total 6-coloring of Fy . For example, o(V1) = (1)8, o(V2) = (2)5,
o(E1) = (3)8, o(Esy) = (4)%, o(E3) = (5)° and o(E4) = (6)°. Hence, we have x” (Fy6) = 6.
Similarly, we can prove that x” (F47) = 6. This completes the proof of Lemma 4.1. O

5. Equitable total coloring of F3,
We determine the equitable total chromatic number of Fj ,, in this section.

Lemma 5.1 xZ(F5,) =06 forn>9 and 7 forn = 8.

Proof We first show x(F5,,) = 6 for n > 9. Again, we use the same expressions of V1, Va, Ej,
Es, E3 and Ej as those in the proofs of Lemmas 3.1 and 4.1, and let E5 = {0Uu(i47) mod n : 0 <

i <n—1} and ng = n mod 6. We construct a 6-total coloring of F5 ,, as follows:
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(612453)%, ne = 0,
6342421651153(612453)" 5,  ng = 1,

(V) = 41215643(612453)%: ng =2, n#8,
634212153(612453) "5, ng = 3,
6321361454(612453) ", ne = 4,
63413625124(612453) "5, ng = b;
(463215)% ng =0,
1153642463215(463215)" 5,  ng = 1,

o(Vy) = 64341215(463215)"il ne =2, n#8,
213463215(463215) "5, ng = 3,
1462433615(463215) "5, ne = 4,
12624433615(463215) "5, ng = b;
(544626)7% ne = 0,
5511116114346(544626) "5,  ng = 1,

o(B) = 33166326(544626)”5: ng =2, n+#8,
522126646(544626) "5, ng = 3,
5536244146(544626) "5, ng =4,
55232241246(544626) 5, ng = 5;
(211344)7%, ng = 0,
226243333662(421134)"5°4,  ng = 1,

o(Ey) = 2643464(421134)”52, ng =2, n#8,
43451432(421134) "5 4, ng = 3,
214416622(421134) "% 4, ng = 4,
2146312412(421134) "5 4, ng = 5;
(336133)%, ng =0,
34365245211(333361)"% 31,  ng = 1,

o(By) = 452131(333361)’Li§4, ng =2, n#8,
1663311(333361)"5 31, ng = 3,
43135213(333361) "% 31, ne =4,
361163663(333361) " 31, ne = 5;
(122562)%, ng =0,
634526524(256212) "% 2463,  ng =1,

o(Bs) = 1252(256212)’%:?533, ng =2, n#8,
34524(256212) "5 2563, ng = 3,
622531(256212) "5 2462, ng =4,
4454551(256212) "% 2462, ng = 5;
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(655451)% ng =0,
462435(165545) " 1655552,  ng = 1,

o(Bs) = 5(165545)%873652451, ng =2, n#8,
65(165545) "5 1655452, ng = 3,
365(165545) "% 1655553, ng = 4,
6335(165545)" % 1655553, ng = 5.

Further, we calculate the numbers of each colors and have

e W) =lo ' @) =17 B) = o~ )] =1 (5)| = lo~'(6)| = T, ne = 0,
e (D] =2, o @) = o' B) = o (@) = o7 (B) = [0 (6)] = T, me =1,
o= (W) = lo~ (@) = g2 1o~ ) = o' B) =10 (5)| = [0~ 1 (6)| = Z52, ne =2,
e Wl =le @l =o' @3) = B2, o7 (@) = [0~ (5)] = [0~ (6)] = 552, e =3,
e W) =o' @) =lo (@) = o~ (6)| = T2, [o 7 (2)| = |07 (5)| = T2, mg =4,
e W) =lo ' @) =17 B) = o~ @] =101 (6)] = B, o7 (5)| = B2, ne =5,

which shows that ||~ (i)] — [e71(j)|| <1 (1 <i < j<6) for n>9.

The above construction implies x” (F5 ) < 6 for n > 9. On the other hand, by the definition
of equitable total chromatic number, x”’(F5,,) > 6. Hence, x (F5,) = 6 for n > 9. Figure 4
shows o(F5 ) for n =9,10,11,12,13 and 14.

Figure 4 o(F5,,) for n =9,10,11,12,13 and 14
By an argument similar to Fyg, we can prove that x”(Fss) > 7. Furthermore, we can

construct an equitable total 7-coloring of Fs 5. For example, o(V1) = (1)%, o(V2) = (2)8, o(E1) =
(3)%, 0(Es) = (4)%, o(E3) = (5)%, o(Es) = (6)% and o(E5) = (7)%. Hence, x”(F5s) = 7. This

completes the proof of Lemma 5.1. O
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6. Conclusion and conjecture

In summary, we have presented equitable total coloring of F3 ,,, Fy, and Fs ,. By combining

Lemmas 3.1, 4.1 and 5.1, we finally obtain the following theorem.

Theorem 6.1 The equitable total chromatic numbers of Fibonacci graphs Fa , are A + 1 for
A=3andn (mod2) =0, A=4andn#6,7, and A =5 and n # 8, and A+ 2 for A = 3 and
n (mod2)=1, A=4andn=6,7and A =5 and n=S38.

Finally, we propose a conjecture on the equitable total chromatic number of Fa , for A > 6.

Conjecture 6.2 The equitable total chromatic number of Fa , for A > 6 is A+ 1 or at most
with very few exceptions.

Note. We further examine the graphs Fg ,, for n (mod7) = 0, and find its equitable total
chromatic number is 7, fulfilling the conjecture A + 1. Indeed, using the same expressions of V7,
Vo, By, Es, F3, E4 and Ej5 as those in the proofs of Lemmas 3.1, 4.1 and 5.1, and letting Eg =
{Vit(i+12) mod n 1 0 < i < n—1}, we can construct a total 7-coloring of Fg,, for n (mod7) = 0 as
follows: o (V1) = (7562341)%, o(Va) = (2341756)7, o(E1) = (1113113)7, o(E2) = (3252362)%,
o(EBs) = (T475434)7 , o(Ey) = (4724241)7, o(Es) = (5636627)7, o(Es) = (6567575)7. There
is o L ()] = |1 @)| = o1 (3)] = o~ (4)] = o~ (5)] = [0~ 1(6)] = |0~ 1(T)| = 5. Figure 5

shows o (Fg14).

Figure 5 o(Fs,14)
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