Equitable Cluster Partition of Planar Graphs with Girth at Least 12

Xiaoling LIU, Lei SUN*, Wei ZHENG
Department of Mathematics and Statistics, Shandong Normal University, Shandong 250358, P. R. China

Abstract

An equitable $\left(\mathcal{O}_{k}^{1}, \mathcal{O}_{k}^{2}, \ldots, \mathcal{O}_{k}^{m}\right)$-partition of a graph G, which is also called a k cluster m-partition, is the partition of $V(G)$ into m non-empty subsets $V_{1}, V_{2}, \ldots, V_{m}$ such that for every integer i in $\{1,2, \ldots, m\}, G\left[V_{i}\right]$ is a graph with components of order at most k, and for each distinct pair i, j in $\{1, \ldots, m\}$, there is $-1 \leq\left|V_{i}\right|-\left|V_{j}\right| \leq 1$. In this paper, we proved that every planar graph G with minimum degree $\delta(G) \geq 2$ and girth $g(G) \geq 12$ admits an equitable $\left(\mathcal{O}_{7}^{1}, \mathcal{O}_{7}^{2}, \ldots, \mathcal{O}_{7}^{m}\right)$-partition, for any integer $m \geq 2$.

Keywords equitable cluster partition; planar graph; girth; discharging
MR(2020) Subject Classification 05C10; 05A18

1. Introduction

All graphs considered in this paper are finite, simple and undirected. For a graph G, we use $V(G)$ to denote the vertex set. An equitable k-partition of a graph G is a partition of $V(G)$ into $\left(V_{1}, \ldots, V_{k}\right)$ such that $-1 \leq\left|V_{i}\right|-\left|V_{j}\right| \leq 1$ for all $1 \leq i<j \leq k$. Let \mathcal{G}_{i} be a class of graphs for $1 \leq i \leq k$, given a graph G, an equitable $\left(\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots, \mathcal{G}_{k}\right)$-partition of graph G is an equitable k-partition of G such that for all $1 \leq i \leq k$, the induced subgraph $G\left[V_{i}\right]$ belongs to \mathcal{G}_{i}.

The \mathcal{G}-equitable partition number of a graph G, denoted by $\chi_{e \mathcal{G}}(G)$, is the smallest integer k such that G has an equitable $\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{k}\right)$-partition with $\mathcal{G}_{1}=\mathcal{G}_{2}=\cdots=\mathcal{G}_{k}=\mathcal{G}$. In contrast to the ordinary vertex partition, a graph may have an equitable $\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{k}\right)$-partition, but no equitable $\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{k}, \mathcal{G}_{k+1}\right)$-partition with $\mathcal{G}_{1}=\cdots=\mathcal{G}_{k}=\mathcal{G}_{k+1}=\mathcal{G}$. The \mathcal{G}-equitable partition threshold of G, denoted by $\chi_{e \mathcal{G}}^{*}(G)$, is the smallest integer k such that G has an equitable $\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{m}\right)$-partition for all $m \geq k$ with $\mathcal{G}_{1}=\mathcal{G}_{2}=\cdots=\mathcal{G}_{m}=\mathcal{G}$.

It is clear that $\chi_{e \mathcal{G}}(G) \leq \chi_{e \mathcal{G}}^{*}(G)$. In fact, the gap between the two parameters can be arbitrarily large. Let $\mathcal{I}, \mathcal{O}_{k}$ denote the class of independent sets, the class of graphs whose components have order at most k, respectively. Let $g(G)$ denote the girth of G, which is the length of the shortest cycle of G.

There are some results in the field of equitable partition of graphs. Hajnal and Szemerédi [1] proved that for any graph G with maximum degree $\Delta(G)$, there is $\chi_{e \mathcal{I}}^{*}(G) \leq \Delta(G)+1$. Chen,
$\overline{\text { Received March 22, 2023; Accepted December 15, } 2023}$
Supported by the National Natural Science Foundation of China (Grant Nos. 12071265; 12271331) and the Natural Science Foundation of Shandong Province (Grant No. ZR202102250232).

* Corresponding author

E-mail address: xiaolingliu2021@163.com (Xiaoling LIU); sunlei@sdnu.edu.cn (Lei SUN)

Lih and Wu [2] conjectured that for any connected graph G different from $K_{m}, C_{2 m+1}$ and $K_{2 m+1,2 m+1}$, there is $\chi_{e \mathcal{I}}^{*}(G) \leq \Delta(G)$. If this conjecture is true, it will prove the former result. For the planar graphs, Zhang, Yap [3] proved that for every planar graph with $\Delta(G) \geq 13$, there is $\chi_{e \mathcal{I}}^{*}(G) \leq \Delta(G)$. Wu, Wang [4] proved that for every planar graph with $\delta(G) \geq 2, g(G) \geq 26$, there is $\chi_{e \mathcal{I}}^{*}(G) \leq 3$ and for every planar graph with $\delta(G) \geq 2, g(G) \geq 14$, there is $\chi_{e \mathcal{I}}^{*}(G) \leq 4$. Later, Luo, Sébastien, Stephens and et al. [5] improved the above results by proving that for every planar graph with $\delta(G) \geq 2, g(G) \geq 14$, there is $\chi_{e \mathcal{I}}^{*}(G) \leq 3$ and for every planar graph with $\delta(G) \geq 2, g(G) \geq 10$, there is $\chi_{e \mathcal{I}}^{*}(G) \leq 4$.

We are interested in the equitable $\left(\mathcal{O}_{k}, \ldots, \mathcal{O}_{k}\right)$-partition. There are also some results.
Theorem 1.1 ([6]) Every planar graph G with minimum degree $\delta(G) \geq 2$ and girth $g(G) \geq 10$ has an equitable $\left(\mathcal{O}_{2}^{1}, \ldots, \mathcal{O}_{2}^{m}\right)$-partition for any integer $m \geq 3$, that is $\chi_{e \mathcal{O}_{2}}^{*}(G) \leq 3$.

Theorem 1.2 ([7]) Every planar graph G with minimum degree $\delta(G) \geq 2$ and girth $g(G) \geq 8$ has an equitable $\left(\mathcal{O}_{2}^{1}, \ldots, \mathcal{O}_{2}^{m}\right)$-partition for any integer $m \geq 4$, that is $\chi_{e \mathcal{O}_{2}}^{*}(G) \leq 4$.

Our main result is presented as follows:
Theorem 1.3 Every planar graph G with minimum degree $\delta(G) \geq 2$ and girth $g(G) \geq 12$ admits an equitable $\left(\mathcal{O}_{7}^{1}, \mathcal{O}_{7}^{2}, \ldots, \mathcal{O}_{7}^{m}\right)$-partition for any integer $m \geq 2$, that is $\chi_{e \mathcal{O}_{7}}^{*}(G)=2$.

It is not hard to see that Theorem 1.3 gives a threshold of equitable tree partition of planar graphs by the condition $g(G) \geq 12$.

2. The structure of minimal counterexamples

By Theorem 1.1, we only need to show that every planar graph with minimum degree at least 2 and girth at least 12 has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. Let G be a counterexample in this case with smallest order. Before discussing the structure of G, we clarify some necessary definitions and notations firstly.

The degree of a vertex v in G, written by $d_{G}(v)$ or simply $d(v)$ when there is no confusion, is the number of edges incident with v in G. A k-vertex, k^{+}-vertex and k^{-}-vertex is a vertex of degree k, at least k and at most k, respectively. A neighbor of the vertex v with degree k, at least k and at most k is called a k-neighbor, k^{+}-neighbor and k^{-}-neighbor of v, respectively.

A chain of G is a maximal induced path whose internal vertices all have degree 2. A t-chain is a chain with t internal vertices. In a chain, the 3^{+}-vertex is called endvertex. Specially, a cycle with exactly one 3^{+}-vertex and all other vertices of degree 2 is also called a chain, in other words, the endvertices of chain are identical. Let x be an endvertex of a chain P, y be a vertex in P, if the distance between x and y is $l+1$, then we say that y is loosely l-adjacent to x. Thus "loosely 0 -adjacent" is the same as usual "adjacent".

Let x be a vertex with $d(x) \geq 3$. Then x is the endvertex of $d(x)$ different chains. Set $T(x)=\left(a_{3}, a_{2}, a_{1}, a_{0}\right)$, where a_{i} is the number of i-chains incident with $x, i \in\{0,1,2,3\}$. Let $t(x)=3 a_{3}+2 a_{2}+a_{1}, n(x)=t(x)+1$, and $A(x)$ be the vertex set composed of all 2-vertices in
its incident chains. We call a 3 -vertex x bad 3 -vertex if $d(x)=3$ with $t(x)=4$.
Let H be a subgraph of G, for $x \in V(H)$, if x has no neighbor in $G-H$, then we call it free vertex, otherwise we call it non-free vertex, the neighbors of x in $G-H$ are called outer neighbors of x.

Lemma 2.1 The graph G is connected.
Proof On the contrary, let $H_{1}, H_{2}, \ldots, H_{k}$ be the connected components of G, where $k \geq 2$. By the minimality of G, both $H=H_{1} \cup H_{2} \cup \cdots \cup H_{k-1}$ and H_{k} have an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$ partition. An equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of H with $\left|V_{1}(H)\right| \leq\left|V_{2}(H)\right|$ and an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of H_{k} with $\left|V_{1}\left(H_{k}\right)\right| \geq\left|V_{2}\left(H_{k}\right)\right|$ generate an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition $\left(V_{1}(H) \cup V_{1}\left(H_{k}\right), V_{2}(H) \cup V_{2}\left(H_{k}\right)\right)$ of G, which contradicts the choice of G.

Lemma 2.2 If G has a t-chain, then $t \leq 3$, and G has no chain whose endvertices are identical.
Proof Suppose to the contrary that G has a t-chain $P=v_{0} v_{1} \cdots v_{t} v_{t+1}$ with $t \geq 4$, where $d\left(v_{0}\right), d\left(v_{t+1}\right) \geq 3$. Let $G_{1}=G-\left\{v_{1}, \ldots, v_{t}\right\}$.

If $v_{0} \neq v_{t+1}$ or $d\left(v_{0}\right) \geq 4$, then $\delta\left(G_{1}\right) \geq 2$. By the minimality of G, the graph G_{1} has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. Let V_{1}, V_{2} be the two sets with $\left|V_{1}\right| \leq\left|V_{2}\right|$. We can extend the partition of G_{1} to an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G as follows. First put the vertex v_{i} into the part V_{1} if i is odd, into V_{2} if i is even for each $i \in\{1,2, \ldots, t\}$. Swap the positions of v_{1} and v_{2} if v_{0} and v_{1} are put in the same part, and further swap the positions of v_{t-1} and v_{t} if v_{t} and v_{t+1} are put in the same part.

Now suppose that $v_{0}=v_{t+1}$ and $d\left(v_{0}\right)=3$. We know $g(G) \geq 12$, so $t \geq 11$. Let x be the neighbor of v_{0} in G_{1}. If $d(x) \geq 3$, consider $G_{2}=G-\left\{v_{0}, v_{1}, \ldots, v_{t}\right\}$, then $\delta\left(G_{2}\right) \geq 2$. By the choice of G, the graph G_{2} has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition with sets V_{1}, V_{2} such that $\left|V_{1}\right| \leq\left|V_{2}\right|$. We can extend the partition of G_{2} to an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G as follows. First put the vertex v_{i} into the part V_{1} if i is even, into V_{2} if i is odd for each $i \in\{0,1, \ldots, t\}$. Swap the positions of v_{0} and v_{1} if the vertices v_{0} and x are put in the same part (the partition of $\left\{v_{0}, v_{1}, \ldots, v_{t}\right\}$ generated in this way admits that the order of each component of each part is at most 2). If $d(x)=2$, then let $Q=x_{0} x_{1} x_{2} \cdots x_{q} x_{q+1}$ be the chain with $x_{0}=v_{0}, x_{1}=x$. Consider the graph $G_{3}=G-\left\{x_{0}, x_{1}, \ldots, x_{q}, v_{1}, \ldots, v_{t}\right\}$, then $\delta\left(G_{3}\right) \geq 2$. By the minimality of G, the graph G_{3} has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition with sets V_{1}, V_{2} such that $\left|V_{1}\right| \leq\left|V_{2}\right|$. We first extend the partition of G_{3} to G_{1} to obtain an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of $G-\left\{v_{1}, \ldots, v_{t}\right\}$ as follows. First put the vertex x_{i} into the part V_{1} if i is even, into V_{2} if i is odd for each $i \in\{0,1, \ldots, q\}$. If x_{q} and x_{q+1} are put in the same part, swap the positions of x_{q-1} and x_{q}. Next we further extend the partition to G similarly to the case that $d\left(v_{0}\right) \geq 4$. In any case, we can always get an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G. This contradicts the choice of G. Hence, there is no t-chain with $t \geq 4$, and G has no chain whose endvertices are identical.

Lemma 2.3 If x is a 3-vertex, then $t(x) \leq 4$.

Proof On the contrary, suppose that x is a 3 -vertex with $t(x) \geq 5$. Lemma 2.2 implies that x is not incident with any t-chains, where $t \geq 4$. Since $t(x) \geq 5$, the vertex x is incident with at least one 3 -chain or at least two 2 -chains, then $6 \leq n(x) \leq 10$. Let $A(x)$ be the vertex set composed of all 2-vertices in its incident chains and $A=A(x) \cup\{x\}$. Let N be the set of the three non-free vertices in A. Then every vertex in N has exactly one outer neighbor in $G-A$. Since $g(G) \geq 12$, the chains do not share endvertices other than x. So $\delta(G-A) \geq 2$. By the minimality of G, the graph $G-A$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. We can extend the partition of $G-A$ to G as follows. First, we put the non-free vertices into the part that its neighbor in $G-A$ is not in. If there are i non-free vertices in V_{1}, then we put arbitrary $\left\lceil\frac{n(x)}{2}\right\rceil-i$ vertices in $A-N$ into V_{1}, where $i \in\{0,1,2,3\}$. Then put the other vertices in A into V_{2}. There are at most five vertices that are put into the same part. In this way, we get an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

Lemma 2.4 If x is a 4 -vertex, then $t(x) \leq 6$.
Proof On the contrary, suppose that x is a 4 -vertex with $t(x) \geq 7$. Lemma 2.2 implies that x is not incident with any t-chains, where $t \geq 4$. Since $t(x) \geq 7$, the vertex x is incident with at least three 2^{+}-chains, or two 3^{+}-chains, or two 2^{+}-chains and two 1 -chains, then $8 \leq n(x) \leq 13$. Let $A(x)$ be the vertex set composed of all 2-vertices in its incident chains and $A=A(x) \cup\{x\}$. Let N be the set of the four non-free vertices in A. Then every vertex in N has exactly one outer neighbor in $G-A$. Since $g(G) \geq 12$, the chains do not share endvertices other than x. So $\delta(G-A) \geq 2$. By the minimality of G, the graph $G-A$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. We can extend the partition of $G-A$ to G as follows. First, we put the non-free vertices into the part that its neighbor in $G-A$ is not in. If there are i non-free vertices in V_{1}, then we put arbitrary $\left\lceil\frac{n(x)}{2}\right\rceil-i$ vertices in $A-N$ into V_{1}, where $i \in\{0,1,2,3,4\}$. Then put the other vertices in A into V_{2}. There are at most seven vertices that are put into the same part. In this way, we get an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

Lemma 2.5 If x is a 5 -vertex, then $t(x) \leq 8$ or $T(x)=(3,0,0,2)$.
Proof On the contrary, suppose that x is a 5 -vertex with $t(x) \geq 9$ and $T(x) \neq(3,0,0,2)$. Lemma 2.2 implies that x is not incident with any t-chains, where $t \geq 4$. So $10 \leq n(x) \leq 16$. Let $A(x)$ be the vertex set composed of all 2-vertices in its incident chains and $A=A(x) \cup\{x\}$. Let N be the set of the five non-free vertices in A. Then every vertex in N has exactly one outer neighbor and x has at most one outer neighbor. Since $g(G) \geq 12$, the chains do not share endvertices other than x. So $\delta(G-A) \geq 2$. By the minimality of G, the graph $G-A$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. We can extend the partition of $G-A$ to G as follows. First, we put the non-free vertices into the part that its neighbor in $G-A$ is not in. For $10 \leq n(x) \leq 14$, if there are i non-free vertices in V_{1}, then we choose $\left\lceil\frac{n(x)}{2}\right\rceil-i$ vertices in $A-N$ arbitrarily into V_{1}, where $i \in\{0,1,2,3,4,5\}$. Then put the other vertices in A into V_{2}. For $15 \leq n(x) \leq 16$, if there are i non-free vertices in V_{1}, then we can choose $\left\lceil\frac{n(x)}{2}\right\rceil-i$ vertices in $A-N$ into V_{1}, where $i \in\{0,1,2,3,4,5\}$, then put the other vertices in A into V_{2} such that A has an equitable
$\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition with $\left|V_{1}\right| \geq\left|V_{2}\right|$. In this way, we get an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

Lemma 2.6 Let x be a bad 3 -vertex with $T(x)=(0,1,2,0)$ or $T(x)=(1,0,1,1)$, and let y be a 3^{+}-vertex that is loosely 1 -adjacent to x. Then
(i) $d(y)=3$ with $t(y) \leq 2$ or
(ii) $d(y)=4$ with $t(y) \leq 4$ or
(iii) $d(y)=5$ with $t(y) \leq 6$ or $T(y)=(2,0,1,2)$, or
(iv) $d(y) \geq 6$.

Proof Let x be a bad 3-vertex with $T(x)=(0,1,2,0)$ or $T(x)=(1,0,1,1)$, and let y be a 3^{+}-vertex that is loosely 1 -adjacent to x. Suppose to the contrary that $d(y)=3$ with $t(y) \geq 3$ or $d(y)=4$ with $t(y) \geq 5$ or $d(y)=5$ with $t(y) \geq 7$ and $T(y) \neq(2,0,1,2)$. By Lemmas 2.2-2.5, if $d(y)=3$, then $3 \leq t(y) \leq 4$; if $d(y)=4$, then $5 \leq t(y) \leq 6$; if $d(y)=5$, then $7 \leq t(y) \leq 8$ and $T(y) \neq(2,0,1,2)$. Let $B=A(x) \cup A(y) \cup\{x, y\},|B|=t(x)+t(y)+1=t(y)+5$. Let N be the subset of B composed of all non-free vertices in $B .|N|=d(x)+d(y)-2=d(y)+1$ and each vertex in N has exactly one outer neighbor in $G-B$. Since $g(G) \geq 12$, the chains do not share endvertices other than x and y. So $\delta(G-B) \geq 2$. By the minimality of G, the graph $G-B$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. First, we put the non-free vertices into the part that its neighbor in $G-B$ is not in. If there are i non-free vertices in N that are put into V_{1}, then we put $\left\lceil\frac{|B|}{2}\right\rceil-i$ vertices in $B-N$ into V_{1} and put the other vertices in B into V_{2} such that B has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition with $\left|V_{1}\right| \geq\left|V_{2}\right|$, where $i \in\{0,1, \ldots, 6\}$. This can be done because $|N|=d(y)+1 \leq \frac{1}{2}(t(y)+5)=\frac{1}{2}|B|$. If $|N|=4$, then $|B| \in\{8,9\}$; if $|N|=5$, then $|B| \in\{10,11\}$; if $|N|=6$, then $|B| \in\{12,13\}$. So there are at most seven vertices that are put in the same part. In this way, we obtain an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

Lemma 2.7 Every 3-vertex y with $T(y)=(0,0,2,1)$ is loosely 1-adjacent to at most one bad 3 -vertex.

Proof Suppose to the contrary that there are two bad 3 -vertices that are both loosely 1-adjacent to y. Let y be a 3 -vertex with $T(y)=(0,0,2,1)$ and let x_{1} and x_{2} be bad 3 -vertices that are loosely 1-adjacent to y. Let $C=A\left(x_{1}\right) \cup A\left(x_{2}\right) \cup A(y) \cup\left\{x_{1}, x_{2}, y\right\}$. Let N be the subset of C composed of all non-free vertices in C. Since $g(G) \geq 12$, we can claim that $\delta(G-C) \geq 2$. Otherwise, x_{1} and x_{2} are bad 3 -vertices with $T\left(x_{i}\right)=(1,0,1,1)$ for $i=1,2$. Denote the vertices loosely 3 -adjacent to x_{1} and x_{2} as y_{1} and y_{2}, respectively, the vertices y_{1} and y_{2} are the same vertices and $d\left(y_{1}\right)=3$, then we have y_{1} is a 3 -vertex with $t\left(y_{1}\right)=6$, this contradicts Lemma 2.3. Hence, we always have $\delta(G-C) \geq 2$. By the minimality of G, the graph $G-C$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. $|N|=d\left(x_{1}\right)+d\left(x_{2}\right)+d(y)-4=5,|C|=t\left(x_{1}\right)+t\left(x_{2}\right)+t(y)+1=11$. Every vertex in N has exactly one outer neighbor. We can extend the partition of $G-C$ to G as follows. First, we put the non-free vertices into the part that its neighbor in $G-C$ is not in. If there are i vertices in N that are put into V_{1}, then put $6-i$ vertices in $C-N$ into V_{1}, where
$i \in\{0,1, \ldots, 5\}$. Last we put the other vertices in C into V_{2}. In this way, we obtain an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

Lemma 2.8 There is no 3-vertex y with $T(y)=(0,0,2,1)$ which is loosely 1-adjacent to a bad 3 -vertex and adjacent to a bad 3 -vertex simultaneously.

Proof Suppose to the contrary that there is a 3 -vertex y with $T(y)=(0,0,2,1)$ that is loosely 1 -adjacent to a bad 3-vertex x_{1} and adjacent to a bad 3-vertex x_{2} simultaneously. Let $C=$ $A\left(x_{1}\right) \cup A\left(x_{2}\right) \cup A(y) \cup\left\{x_{1}, x_{2}, y\right\}$. Let N be the subset of C composed of all non-free vertices in C. Since $g(G) \geq 12$, the chains do not share endvertices other than x_{1}, x_{2} and y. So $\delta(G-C) \geq 2$. By the minimality of G, the graph $G-C$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition.

$$
|N|=d\left(x_{1}\right)+d\left(x_{2}\right)+d(y)-4=5,|C|=t\left(x_{1}\right)+t\left(x_{2}\right)+t(y)+2=12 .
$$

Every vertex in N has exactly one outer neighbor. First, we put the non-free vertices into the part that its neighbor in $G-C$ is not in. If there are i vertices in N that are put into V_{1}, then put $6-i$ vertices in $C-N$ into V_{1}, where $i \in\{0,1, \ldots, 5\}$. Last we put the other vertices in C into V_{2}. In this way, we obtain an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

Lemma 2.9 Let x be a bad 3-vertex with $T(x)=(0,2,0,1)$ or $T(x)=(1,0,1,1)$, and let y be the 3^{+}-neighbor of x. Then
(i) $d(y)=3$ with $t(y) \leq 1$ or
(ii) $d(y)=4$ with $t(y) \leq 3$ or
(iii) $d(y) \geq 5$.

Proof Let x be a bad 3-vertex with $T(x)=(0,2,0,1)$ or $T(x)=(1,0,1,1)$, and let y be the 3^{+}-neighbor of x. Suppose to the contrary that $d(y)=3$ with $t(y) \geq 2$ or $d(y)=4$ with $t(y) \geq 4$. By Lemmas 2.2-2.4, if $d(y)=3$, then $2 \leq t(y) \leq 4$; If $d(y)=4$, then $4 \leq t(y) \leq 6$. Let

$$
B=A(x) \cup A(y) \cup\{x, y\},|B|=t(x)+t(y)+2=t(y)+6 .
$$

Let N be the subset of B composed of all non-free vertices in $B .|N|=d(x)+d(y)-2=d(y)+1$. Each vertex in N has exactly one outer neighbor. Since $g(G) \geq 12$, the chains do not share endvertices other than x and y. So $\delta(G-B) \geq 2$. By the minimality of G, the graph $G-B$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. First, we put the non-free vertices into the part that its neighbor in $G-B$ is not in. If there are i non-free vertices in N that are put into V_{1}, then we put $\left\lceil\frac{|B|}{2}\right\rceil-i$ vertices in $B-N$ into V_{1} and put the other vertices in B into V_{2} such that B has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition with $\left|V_{1}\right| \geq\left|V_{2}\right|$, where $i \in\{0,1, \ldots, 5\}$. This can be done because $|N|=d(y)+1 \leq \frac{1}{2}(t(y)+6)=\frac{1}{2}|B|$. If $|N|=4$, then $|B| \in\{8,9,10\}$; if $|N|=5$, then $|B| \in\{10,11,12\}$. So at most six vertices are put in the same part. In this way, we obtain an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

Lemma 2.10 Every 3-vertex y with $T(y)=(0,0,1,2)$ is adjacent to at most one bad 3-vertex.
Proof Suppose to the contrary that there is a 3 -vertex y with $T(y)=(0,0,1,2)$ that is adjacent
to two bad 3 -vertices x_{1} and x_{2}. Let $C=A\left(x_{1}\right) \cup A\left(x_{2}\right) \cup A(y) \cup\left\{x_{1}, x_{2}, y\right\}$. Let N be the subset of C composed of all non-free vertices in C. Since $g(G) \geq 12$, the chains do not share endvertices other than x_{1}, x_{2} and y. So $\delta(G-C) \geq 2$. By the minimality of G, the graph $G-C$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. $|N|=d\left(x_{1}\right)+d\left(x_{2}\right)+d(y)-4=5,|C|=t\left(x_{1}\right)+t\left(x_{2}\right)+t(y)+2=12$. Every vertex in N has exactly one outer neighbor. First, we put the non-free vertices into the part that its neighbor in $G-C$ is not in. If there are i vertices in N that are put into V_{1}, then put $6-i$ vertices in $C-N$ into V_{1}, where $i \in\{0,1, \ldots, 5\}$. Last, we put the other vertices in C into V_{2}. In this way, we obtain an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

Lemma 2.11 Every 3-vertex y with $T(y)=(0,1,0,2)$ is adjacent to at most one bad 3-vertex.
Proof Suppose to the contrary that there is a 3 -vertex y with $T(y)=(0,1,0,2)$ that is adjacent to two bad 3 -vertices x_{1} and x_{2}. Let $C=A\left(x_{1}\right) \cup A\left(x_{2}\right) \cup A(y) \cup\left\{x_{1}, x_{2}, y\right\}$. Let N be the subset of C composed of all non-free vertices in C. Since $g(G) \geq 12$, the chains do not share endvertices other than x_{1}, x_{2} and y. So $\delta(G-C) \geq 2$. By the minimality of G, the graph $G-C$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. $|N|=d\left(x_{1}\right)+d\left(x_{2}\right)+d(y)-4=5,|C|=t\left(x_{1}\right)+t\left(x_{2}\right)+t(y)+3=13$. Every vertex in N has exactly one outer neighbor. First, we put the non-free vertices into the part that its neighbor in $G-C$ is not in. If there are i vertices in N that are put into V_{1}, then put $7-i$ vertices in $C-N$ into V_{1}, where $i \in\{0,1, \ldots, 5\}$. Last, we put the other vertices in C into V_{2}. In this way, we obtain an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

Lemma 2.12 Every 4-vertex y with $T(y)=(1,0,3,0)$ is loosely 1-adjacent to at most one bad 3 -vertex.

Proof Suppose to the contrary that there is a 4-vertex y with $T(y)=(0,1,3,0)$ that is loosely 1 -adjacent to at least two bad 3-vertices x_{1} and x_{2}. Let $C=A\left(x_{1}\right) \cup A\left(x_{2}\right) \cup A(y) \cup\left\{x_{1}, x_{2}, y\right\}$. Let N be the subset of C composed of all non-free vertices in C. Since $g(G) \geq 12$, we can claim that $\delta(G-C) \geq 2$. Otherwise, x_{1} and x_{2} are bad 3 -vertices with $T\left(x_{i}\right)=(1,0,1,1)$ at the same time, $i=1,2$. Denote the vertices loosely 3 -adjacent to x_{1} and x_{2} as y_{1} and y_{2}, respectively, the vertices y_{1} and y_{2} are the same vertices and $d\left(y_{1}\right)=3$, then we have y_{1} is a 3 -vertex with $t\left(y_{1}\right)=6$, this contradicts Lemma 2.3. Hence, we always have $\delta(G-C) \geq 2$. By the minimality of G, the graph $G-C$ has an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition. $|N|=d\left(x_{1}\right)+d\left(x_{2}\right)+d(y)-4=6$, $|C|=t\left(x_{1}\right)+t\left(x_{2}\right)+t(y)+1=15$. Every vertex in N has exactly one outer neighbor. First, we put the non-free vertices into the part that its neighbor in $G-C$ is not in. If there are i vertices in N that are put into V_{1}, then put $8-i$ vertices in $C-N$ into V_{1}, where $i \in\{0,1, \ldots, 6\}$. Last, we put the other vertices in C into V_{2}. In this way, we obtain an equitable $\left(\mathcal{O}_{7}, \mathcal{O}_{7}\right)$-partition of G, this leads to a contradiction.

3. Discharging

The maximum average degree of a graph G is

$$
\operatorname{mad}(G)=\max \left\{\left.\frac{2|E(H)|}{|V(H)|} \right\rvert\, H \subseteq G\right\}
$$

By Euler's formula, a planar graph G with girth g satisfies $\operatorname{mad}(G)<\frac{2 g}{g-2}$ (see [8]). Consider the minimal counterexample G. Since $g(G) \geq 12$, we have $\operatorname{mad}(G)<\frac{12}{5}$. For any $x \in V(G)$, let $\mu(x)=d(x)-\frac{12}{5}$ be the initial charge. We have

$$
\sum_{x \in V(G)} \mu(x)=\sum_{x \in V(G)}\left(d(x)-\frac{12}{5}\right)<0
$$

Next, we redistribute the charges among vertices according to the following rules:
(R1) Every 3^{+}-vertex gives $\frac{1}{5}$ to each 2 -vertex in its incident chains.
(R2) Every 3^{+}-vertex y gives $\frac{1}{5}$ to each bad 3-vertex x that is loosely 1-adjacent to y, where $d(x)=3, T(x)=(0,1,2,0)$ or $T(x)=(1,0,1,1)$.
(R3) Every 3^{+}-vertex y gives $\frac{1}{5}$ to each bad 3 -vertex x that is adjacent to y, where $d(x)=3$, $T(x)=(0,2,0,1)$ or $T(x)=(1,0,1,1)$.

Let $\mu^{\prime}(x)$ be the final charge of x after applying rules (R1)-(R3). Next, we prove $\mu^{\prime}(x) \geq 0$ for all $x \in V(G)$.

Let $x \in V(G)$. If $d(x)=2$, then $\mu^{\prime}(x)=\left(2-\frac{12}{5}\right)+\frac{1}{5} \times 2=0$ by (R1).
Assume $d(x)=3$, it follows from Lemma 2.3 that $t(x) \leq 4$. If $t(x)=0$, then x is adjacent to at most three bad 3 -vertices, thus $\mu^{\prime}(x) \geq\left(3-\frac{12}{5}\right)-\frac{1}{5} \times 3=0$ by (R3). If $t(x)=1$, then Lemma 2.10 implies that x is adjacent to at most one bad 3 -vertex, thus $\mu^{\prime}(x) \geq\left(3-\frac{12}{5}\right)-\frac{1}{5} \times 1-\frac{1}{5} \times 2=0$ by (R1), (R2) and (R3). If $t(x)=2$ with $T(x)=(0,0,2,1)$, then Lemmas 2.7, 2.8 imply that x is loosely 1 -adjacent to at most one bad 3 -vertex, and it is impossible that x is loosely 1 -adjacent to a bad 3-vertex and adjacent to a bad 3-vertex at the same time, thus $\mu^{\prime}(x) \geq\left(3-\frac{12}{5}\right)-\frac{1}{5} \times 2-\frac{1}{5} \times 1=$ 0 by (R1), (R2) and (R3). If $t(x)=2$ with $T(x)=(0,1,0,2)$, then Lemma 2.11 implies that x is adjacent to at most one bad 3-vertex, thus $\mu^{\prime}(x) \geq\left(3-\frac{12}{5}\right)-\frac{1}{5} \times 2-\frac{1}{5} \times 1=0$ by (R1), (R2) and (R3). If $t(x)=3$, then Lemma 2.6 implies x is not loosely 1 -adjacent to bad 3 -vertex, and Lemma 2.9 implies x is not adjacent to bad 3-vertex, thus $\mu^{\prime}(x) \geq\left(3-\frac{12}{5}\right)-\frac{1}{5} \times 3=0$ by (R1). If $t(x)=4$, then $\mu^{\prime}(x) \geq\left(3-\frac{12}{5}\right)-\frac{1}{5} \times 4+\frac{1}{5} \times 1=0$ by (R1), (R2) and (R3).

Assume $d(x)=4$, it follows from Lemma 2.4 that $t(x) \leq 6$. If $t(x) \leq 4$, then x is loosely 1 -adjacent to or adjacent to at most four bad 3 -vertices, so $\mu^{\prime}(x) \geq\left(4-\frac{12}{5}\right)-\frac{1}{5} \times 4-\frac{1}{5} \times 4=0$ by (R1), (R2) and (R3). If $t(x)=5$, then x is incident with at least one 2^{+}-chain, namely, x is loosely 1 -adjacent to or adjacent to at most three bad 3 -vertices, hence $\mu^{\prime}(x) \geq\left(4-\frac{12}{5}\right)-\frac{1}{5} \times 5-\frac{1}{5} \times 3=0$ by (R1), (R2) and (R3). If $t(x)=6$ with $T(x)=(1,0,3,0)$, then Lemma 2.12 implies that x is loosely 1-adjacent to at most one bad 3-vertex, thus $\mu^{\prime}(x) \geq\left(4-\frac{12}{5}\right)-\frac{1}{5} \times 6-\frac{1}{5} \times 1=\frac{1}{5}$ by (R1), (R2) and (R3). If $t(x)=6$ with $T(x) \neq(1,0,3,0)$, then x is incident with at least two 2^{+}-chains, hence $\mu^{\prime}(x) \geq\left(4-\frac{12}{5}\right)-\frac{1}{5} \times 6-\frac{1}{5} \times 2=0$ by (R1), (R2) and (R3).

Assume $d(x)=5$, it follows from Lemma 2.5 that $t(x) \leq 8$ or $T(x)=(3,0,0,2)$. If $t(x) \leq 8$,
then x is loosely 1-adjacent to or adjacent to at most five bad 3 -vertices, so $\mu^{\prime}(x) \geq\left(5-\frac{12}{5}\right)-\frac{1}{5} \times$ $8-\frac{1}{5} \times 5=0$ by (R1), (R2) and (R3). If $T(x)=(3,0,0,2)$, then $\mu^{\prime}(x) \geq\left(5-\frac{12}{5}\right)-\frac{1}{5} \times 9-\frac{1}{5} \times 2=\frac{2}{5}$ by (R1), (R2) and (R3).

Assume $d(x) \geq 6$, then $\mu^{\prime}(x) \geq\left(d(x)-\frac{12}{5}\right)-\frac{1}{5} \times 3 \times d(x)=\frac{2}{5} d(x)-\frac{12}{5} \geq 0$ by (R1), (R2) and (R3).

We have proved that $\mu^{\prime}(x) \geq 0$ for all $x \in V(G)$, then $\sum_{x \in V(G)} \mu^{\prime}(x) \geq 0$, this contradicts $\sum_{x \in V(G)} \mu(x)<0$. This completes the proof.

Acknowledgements We thank the referees for their time and comments.

References

[1] A. HAJNAL, E. SZEMERÉDI. Proof of a Conjecture of P. Erdős. North-Holland, Amsterdam-London, 1970.
[2] B. L. CHEN, K. W. LIH, P. L. WU. Equitable coloring and the maximum degree. European J. Combin., 1994, 15(5): 443-447.
[3] Yi ZHANG, H. P. YAP. Equitable colorings of planar graphs. J. Combin. Math. Combin. Comput., 1998, 27: 97-105.
[4] Jianliang WU, Ping WANG. Equitable coloring planar graphs with large girth. Discrete Math., 2008, 308(56): 985-990.
[5] Rong LUO, J. S. SÉBASTIEN, D. C. STEPHENS, et al. Equitable colorings of sparse planar graphs. SIAM J. Discrete Math., 2010, 24(4): 1572-1583.
[6] L. WILLIAMS, J. VANDENBUSSCHE, Gexin YU. Equitable defective colorings of sparse planar graphs. Discrete Math., 2012, 312: 957-962.
[7] Ming LI, Xia ZHANG. Relaxed equitable colorings of planar graphs with girth at least 8. Discrete Math., 2020, 343(5): 111790, 7 pp.
[8] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. MacMillan, London, 1976.

