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Abstract Let G be a cyclic group of order pq, where q|p− 1, q, p are prime numbers and let F

be a field of characteristic p. Let V be a finite-dimensional G-module over F . We refer to the

maximal degree of indecomposable polynomials in the invariant algebra F [V ]G as the Noether

number of the invariant algebra F [V ]G, denoted β(F [V ]G). In this paper, we determine the

Noether number of the invariant algebra F [V ]G. Furthermore, we prove that for such a cyclic

group of order pq, Wehlau’s conjecture holds.
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1. Introduction

Let G be a finite group and F be a field. Let V be the n-dimensional representation space of

G over F . Let x1, x2, . . . , xn be a basis of the dual space V ∗ of V . Then the action of G on V can

be induced to the dual space V ∗ and also to the polynomial algebra F [V ] = F [x1, x2, . . . , xn].

The set consisting of polynomials that are fixed under the action of G is the main object of study

in invariant theory. This set is called the algebra of invariants, denoted as F [V ]G. It is the graded

subalgebra of the polynomial algebra. According to Noether’s classical theorem, if G is a finite

group, then the invariant algebra F [V ]G is finitely generated. Let the minimal generating set

of the invariant algebra F [V ]G be f1, f2, . . . , fs, thus the maximal degree of polynomials in the

minimal generating set is called the Noether number of the invariant algebra F [V ]G, denoted by

β(F [V ]G). We call β(G):=maxV β(F [V ]G) for any finite dimensional representation V of a finite

group G as the Noether number of G. Firstly, Noether proved that if the characteristic of F is

zero, then β(G) ≤ |G| in [1]. Secondly, this was generalized to the case of coprime characteristic

by Fleischmann [2] and Fogarty [3]. In the non-modular case, i.e., the characteristic of the field is 0

or does not divide |G|, mathematicians proved that the Noether number of any finite group is less

than or equal to the order of the group. But in the modular case, i.e., the characteristic of the field

divides |G|, in 1990 Richman [4] found an example to show that the Noether number is related

to the dimension of the representation space and the order of the group. In 2006, Fleischmann,

Sezer, Shank and Woodcock computed the Noether number for an arbitrary representation of
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a cyclic group of prime order [5]. Subsequently, using the Castelnuovo-Mumford regularity and

projective resolution, Symonds [6] determined an upper bound on the Noether number of a

finite-dimensional nontrivial representation of a nontrivial group. It is still an open question as

to whether this upper bound can be reached. Mathematicians turned to describe the relation of

the Noether number between the module of a group and its submodule, and Wehlau proposed

the following conjecture:

Conjecture 1.1 ([7]) If U is a G-submodule of a G-module V , then β(F [U ]G) ≤ β(F [V ]G).

Shank and the proposer of the conjecture proved that the conjecture holds for cyclic groups

of order p (see [8]). For other finite groups, no relevant conclusions have been given.

In this paper, we determine the Noether number of any finite dimensional representation of

a cyclic group of order pq and prove that Wehlau’s conjecture holds for cyclic groups of order pq,

where p, q are prime and q|p−1. For the remainder of the paper, let G be a cyclic group of order

pq and a be a generating element of G, where p, q are prime and q|p − 1. Let P = 〈aq〉 be the

Sylow p subgroup of G and H = 〈ap〉 be the subgroup of order q of G. It is known that the group

P has exactly p non-isomorphic indecomposable representations over a field of characteristic p,

with the dimension of the representations being 1, 2, . . . , p, respectively, see [9]. Denote these

indecomposable representations by Vn, n = 1, . . . , p, respectively. Let e1, . . . , en be a basis of Vn,

then

aq(ei) = ei +
n−i∑

j=1

(−1)jei+j , i = 1, . . . , n− 1, aq(en) = en.

Suppose that x1, . . . , xn is a dual basis of dual space V ∗

n of Vn. Then

aq(x1) = x1, a
q(xi) = xi + xi−1, i = 2, . . . , n.

It is easy to see that xn is the generating element of V ∗

n and that Vn
∼= V ∗

n . We call such

an element xn the distinguished variable. Let Irr(H) be the set consisting of all irreducible

characters of H over the complex number field. Taking 1 6= χ to be an element of Irr(H), then

Irr(H) = {χj |j = 0, 1, . . . , q − 1}. Since H is a cyclic group, the character χj is actually a

1-dimensional representation of H . According to [10, Proposition 1.1],

Vi,j := Vi ⊗ χj , i = 1, . . . , p, j = 0, 1, . . . , q − 1

are all non-isomorphic indecomposable modules of G. It can be shown that every indecomposable

module of G is a cyclic module. Let V be a G-module, then β(F [V ]G) = β(F [V ⊕ mV1,0]
G),

i.e., adding trivial summands does not change the Noether number. A G-module is said to be

reduced if it does not contain a copy of V1,0 as a summand. For a nonfaithful reduced G-module

V , we have β(F [V ]G) = β(F [V ]P ) or β(F [V ]G) = β(F [V ]H) = q. Therefore, it is sufficient to

find the Noether number of a faithful reduced G-module V . Also note that for i = 1, . . . , p;

j = 0, 1, . . . , q − 1, V G
i,j , the vector space of fixed points, has dimension one. Therefore, for any

G-module W , dim(WP ) is the number of indecomposable summands in the decomposition of W .

According to [8, Theorem 5.1], using Transfer mapping, we can get

β(F [V2,j ]
G) = β(F [V3,j ]

G) = pq, j = 1, . . . , q − 1.
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For other G-modules V with Noether number, we have the following conclusion.

Theorem 1.2 Let V be a faithful reduced G-module over a field F of characteristic p and V

does not contain 1-dimensional representation as a summand. Let s be the maximum dimension

of the indecomposable summands of V and P be the Sylow p subgroup of G. Then

(1) If s = 3 and V does not contain V3,j as a summand for any j ∈ {1, . . . , q− 1}, or if s > 3

and V does not contain Vk,j as a summand for any j ∈ {1, . . . , q − 1} and any k ∈ {4, . . . , s}, or

if V ∼= ⊕⊕q−1

t=1 mtV2,t,
∑q−1

t=1
mt > 2, then

β(F [V ]G) = q(β(F [V ]P )− 1).

(2) Other cases, i.e., if V ∼= V2,j or V ∼= 2V2,j , or if s = 3 and at least one of the summands

of V is isomorphic to V3,j with j ∈ {1, . . . , q− 1}, or if s > 3 and at least one of summands of V

is isomorphic to Vk,j with k ∈ {4, . . . , s} and j ∈ {1, . . . , q − 1}, then

β(F [V ]G) = qβ(F [V ]P ).

(3) β(F [V ]G) = β(F [V ⊕⊕q−1

j=1
mjV1,j ]

G).

Proof The results (1) and (2) follow from Propositions 2.3 and 3.4, respectively.

(3) Obviously, β(F [V ]P ) = β(F [V ⊕⊕q−1

j=1mjV1,j ]
P ). And we have

β(F [V ]G) =

{
q(β(F [V ⊕⊕q−1

j=1
mjV1,j ]

P )− 1), V ∈ (1)

qβ(F [V ⊕⊕q−1

j=1mjV1,j ]
P ), V ∈ (2)

Therefore, β(F [V ]G) = β(F [V ⊕⊕q−1

j=1mjV1,j ]
G). 2

Theorem 1.3 If U is a G-submodule of a G-module V , then β(F [U ]G) ≤ β(F [V ]G).

Proof If V is a nonfaithful G-module, then the conclusion holds by [8, Theorem 4.2]. From

Theorem 1.2 (3), we know that adding the 1-dimensional summands does not change the Noether

number. Thus it is sufficient to consider the faithful reduced G-module V withnot 1-dimensional

summands. If V belongs to the first case of Theorem 1.2, then the submodule U of V also

belongs to the first case. Since β(F [U ]P ) ≤ β(F [V ]P ), according to Theorem 1.2 (1) we have

β(F [U ]G) ≤ β(F [V ]G). If V belongs to the second case in Theorem 1.2, then the submodule U

of V belongs to the first or second case. Similarly, it follows from Theorem 1.2. 2

2. Upper bounds of Noether numbers

First, by [2, Theorem 3.1], we can obtain an upper bound of Noether numbers for the G-

module V .

Proposition 2.1 ([2]) Let V be a finite dimensional G-module over a field F of characteristic

p. Let N be a normal subgroup of G and |G : N | be mutually prime to p. Then β(F [V ]G) ≤

|G : N |β(F [V ]N ).

To determine the upper bound on the Noether number of a G-module V , we introduce the
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definition of a relative Transfer mapping. Let P be a subgroup of G and V be a G-module.

Define the relative Transfer mapping:

TrGP : F [V ]P → F [V ]G,

TrGP (f) =

q−1∑

i=0

aif.

If |G : P | is mutually prime to p, then the relative Transfer mapping is a surjection.

Since the group G is a cyclic group in this article, according to the relative Transfer mapping

the generating elements of F [V ]G are the a-invariant elements in F [V ]P . The following is based

on the generating elements of F [V ]P to find the polynomial with the maximal degree in F [V ]G.

Take the faithful reduced G-module V ∼= ⊕q−1

t=0mtV2,t,
∑q−1

t=0
mt = l > 2 as an example. Let

x1, y1; . . . ;xl, yl be a basis of V
∗. From [11, Theorem 6.3], it is known that the minimal generating

elements of the invariant ring F [V ]P are

xi, N
P (yi), i = 1, . . . , l; uij = xiyj − xjyi, 1 ≤ i < j ≤ l;

TrP (yk1

1 . . . ykl

l ), ki = 0, 1, . . . , p− 1, i = 1, . . . , l.

The set consisting of this minimal generating elements is denoted as S. The a-invariant element

of F [⊕q−1

t=0mtV2,t]
P satisfies a(f) = f , ∀ f ∈ F [⊕q−1

t=0mtV2,t]
P . From Proposition 2.1, we know

that its Noether number is less than or equal to l(p − 1). Since TrP (yp−1

1 · · · yp−1

l ) is an a-

invariant polynomial, this polynomial is a generating element of F [V ]G. We take a subset

S1 = {f ∈ S|a(f) = f} of S. Then S1 is contained in the minimal generating set of F [V ]G.

In the following we determine the other indecomposable generating elements. Let ξ be the q-th

primitive root of unity. The a-invariant polynomial should satisfy the condition: let a(fi) = ξai ,

0 < ai < q,

{f c1
1 · · · f cn

n |fi ∈ S, fi /∈ S1,
n∑

i=1

aici ≡ 0mod(q)}.

Further, the generating element of the a-invariant polynomial should also satisfy that the se-

quence is non-shortenable, i.e., there is no sequence (c′1, . . . , c
′

n) with c′i ≤ ci such that

n∑

i=1

aic
′

i ≡ 0mod(q),

where (0, . . . , 0) 6= (c′1, . . . , c
′

n) 6= (c1, . . . , cn). According to [12, Lemma 2.1], we obtain the

following lemma.

Lemma 2.2 ([12]) The non-shortenable sequence (c1, . . . , cn) such that
∑n

i=1
aici ≡ 0mod(q)

holds satisfies
∑n

i=1
ci ≤ q, and

∑n

i=1
ci can be taken to its maximum value q.

Proposition 2.3 Let V be a faithful reduced G-module over a field F of characteristic p and V

does not contain 1-dimensional representation as a summand. Let s be the maximum dimension

of the indecomposable summands of V . Then
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(1) If s = 3 and V does not contain V3,j as a summand for any j ∈ {1, . . . , q− 1}, or if s > 3

and V does not contain Vk,j as a summand for any j ∈ {1, . . . , q − 1} and any k ∈ {4, . . . , s}, or

if V ∼= ⊕⊕q−1

t=1 mtV2,t,
∑q−1

t=1
mt > 2, then

β(F [V ]G) ≤ q(β(F [V ]P )− 1).

(2) Other cases, i.e., if V ∼= V2,j or V ∼= 2V2,j , or if s = 3 and at least one of the summands

of V is isomorphic to V3,j with j ∈ {1, . . . , q− 1}, or if s > 3 and at least one of summands of V

is isomorphic to Vk,j with k ∈ {4, . . . , s} and j ∈ {1, . . . , q − 1}, then

β(F [V ]G) ≤ qβ(F [V ]P ).

Proof According to Proposition 2.1, there is β(F [V ]G) ≤ qβ(F [V ]P ). The second case holds

and the following prove (1).

Case 1. If V ∼= ⊕q−1

t=0mtV2,t,
∑q−1

t=0
mt = l > 2 and V is faithful, then V contains at least

V2,j , for some j ∈ {1, . . . , q − 1}. Let a basis of V ∗ be x, y;x1, y1; . . . ;xl−1, yl−1, where x, y is

a basis of V ∗

2,j . According to [11, Theorem 6.3], we have β(F [V ]P ) ≤ l(p − 1). After calculat-

ing, TrP (yp−1yp−1

1 · · · yp−1

l−1
) is a-invariant, TrP (yp−2yp−1

1 · · · yp−1

l−1
) is not a-invariant. Therefore,

TrP (yp−2yp−1

1 · · · yp−1

l−1
) is the maximum degree of a-variable polynomials in the minimal generat-

ing set of F [V ]P . According to Lemma 2.2, the maximum degree in the generating set of F [V ]G

satisfies β(F [V ]G) ≤ q[l(p− 1)− 1].

Case 2. If s = 3 and the summands of V do not contain V3,j , then V contains at least

one 2-dimensional faithful indecomposable module V2,k, for some k ∈ {1, . . . , q − 1}. One may

suppose the decomposition of V as

V ∼= V3,0 ⊕ V2,k ⊕⊕q−1

t=0mtV2,t,

q−1∑

t=0

mt ≥ 0.

Let a basis of V ∗ be x, y, z;x0, y0;x1, y1; . . . ;xl, yl, where x, y, z is a basis of V ∗

3,0 and x0, y0

is a basis of V ∗

2,k. According to [5, Proposition 1.1], we have β(F [V ]P ) ≤ (l + 2)(p − 1) +

1. After calculating, TrP (yzp−1yp−1

0 yp−1

1 · · · yp−1

l ) is a-invariant, TrP (yzp−1yp−2

0 yp−1

1 · · · yp−1

l ) is

not a-invariant. Therefore, TrP (yzp−1yp−2

0 yp−1

1 · · · yp−1

l ) is the maximum degree of a-variable

polynomials in the minimal generating set of F [V ]P by [5, Proposition 1.1] and [13, Corollary

9.16]. According to Lemma 2.2, the maximum degree in the generating set of F [V ]G satisfies

β(F [V ]G) ≤ q[(l + 2)(p− 1)].

Case 3. If s > 3 and the summands of V do not contain V4,j , for any j ∈ {1, . . . , q − 1},

then V contains at least one 2-dimensional faithful indecomposable module V2,k, for some k ∈

{1, . . . , q − 1}. One may suppose the decomposition of V as

V ∼= V4,0 ⊕ V2,k ⊕⊕q−1

t=0mtV2,t,

q−1∑

t=0

mt ≥ 0.

Let a basis of V ∗ be x, y, z, w;x0, y0;x1, y1; . . . ;xl, yl, where x, y, z, w is a basis of V ∗

4,0 and x0, y0 is

a basis of V ∗

2,k. According to [5, Proposition 1.1], we have β(F [V ]P ) ≤ (l+2)(p−1)+p−2. After

calculating, TrP (zp−2wp−1yp−1

0 yp−1

1 · · · yp−1

l ) is a-invariant, TrP (zp−2wp−1yp−2

0 yp−1

1 · · · yp−1

l ) is
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not a-invariant. Therefore, TrP (zp−2wp−1yp−2

0 yp−1

1 · · · yp−1

l ) is the maximum degree of a-variable

polynomials in the minimal generating set of F [V ]P by [5, Proposition 1.1] and [13, Corollary

9.16]. According to Lemma 2.2, the maximum degree in the generating set of F [V ]G satisfies

β(F [V ]G) ≤ q[(l + 2)(p− 1) + p− 3]. 2

3. Lower bounds of the Noether numbers

In this section, let G = 〈a〉 be a cyclic group of order pq. Let P = 〈aq〉 be a Sylow p subgroup

of G.

Lemma 3.1 Let V be a finite-dimensional G-module. If the invariant f of F [V ]P is indecom-

posable and a(f) 6= f , then f q is an invariant in F [V ]G and indecomposable in F [V ]G.

Proof If f is an invariant of F [V ]P and a(f) 6= f , then f q is an invariant of F [V ]G. Suppose

that f q is decomposable in F [V ]G, i.e.,

f q =

r∑

i=1

fihi, fi, hi ∈ F [V ]G, i = 1, . . . , r,

where 0 < deg(fi), deg(hi) < deg(f)q. Since P is a subgroup of G, it is obvious that fi, hi are

also elements of F [V ]P . Since the invariant f is indecomposable in F [V ]P , fi = fki , hi = f li ,

ki + li = q, i = 1, . . . , l. Therefore, ki = 0 or ki = q because of fi, hi ∈ F [V ]G, which contradicts

the assumption. Therefore, it is indecomposable in F [V ]G. 2

Suppose V ∼= V3,0 ⊕ V2,k ⊕⊕q−1

t=0mtV2,t,
∑q−1

t=0
mt = l. Choose a basis

x, y, z;x0, y0;x1, y1; . . . ;xl, yl

for V ∗, where x, y, z is a basis of V ∗

3,0 and x0, y0 is a basis of V ∗

2,k.

Lemma 3.2 TrP (yzp−1yp−2

0 yp−1

1 · · · yp−1

l ) in F [V3,0 ⊕ V2,k ⊕⊕q−1

t=0mtV2,t]
P is indecomposable.

Proof The proof is by induction on l. When l = 0, we prove that TrP (yzp−1yp−2

0 ) in F [V3,0 ⊕

V2,k]
P is indecomposable. By way of contradiction, suppose that

f := TrP (yzp−1yp−2

0 ) =

r∑

i=1

fihi, fi, hi ∈ F [V3,0 ⊕ V2,k]
P ,

where 0 < deg(fi), deg(hi) < deg(f). We use a graded reverse lexicographic with z > y > y0 >

x > x0. We denote the leading term of a polynomial h with LT(h). Then LT(f) = ypyp−2

0 by

p−1∑

t=0

tm =

{
−1, p− 1 | m,

0, p− 1 ∤ m,

where m is a positive integer. We may assume that LT(fihi) ≥ LT(fi+1hi+1) for i = 1, . . . , r−1.

Clearly, either LT(f1h1) = ypyp−2

0 or LT(f1h1) = LT(f2h2) > ypyp−2

0 . According to the proof

procedure of [8, Corollary 5.2], it is easy to know that ypyp−2

0 is the indecomposable element

of F [V3,0 ⊕ V2,k]
P . Therefore, LT(f1h1) = LT(f2h2) > ypyp−2

0 . Note that F [V3,0 ⊕ V2,k] =

F [V3,0] ⊗ F [V2,k] is bi-graded, the action of P respects this grading, and all of our generators



The Noether numbers for cyclic groups of pq order in the modular case 167

are homogeneous with respect to this grading. However, there are no monomials with bi-degree

(p, p− 2) which are greater than ypyp−2

0 . Thus TrP (yzp−1yp−2

0 ) is indecomposable.

For l > 1, by way of contradiction, suppose that

f := TrP (yzp−1yp−2

0 yp−1

1 · · · yp−1

l ) =

r∑

i=1

fihi, fi, hi ∈ F [V ]P ,

where 0 < deg(fi), deg(hi) < deg(f).

We may assume that fi, hi and fihi are homogeneous with respect to multidegree, and that

each fihi has multidegree (p, p − 2, p − 1, . . . , p − 1). Suppose mq−1 > 0. Use the inclusion of

U := V3,0 ⊕ V2,k ⊕⊕q−2

t=0mtV2,t ⊕ (mq−1 − 1)V2,q−1 ⊕ V1,q−1 into V to define a projection

π : F [V ] → F [U ],

π(xl) = 0, π(yl) = xl

and fix the other variables. Note that π is the algebra homomorphism. Since π is equivariant,

π(TrP (yzp−1yp−2

0 · · · yp−1

l ) = xp−1

l TrP (yzp−1yp−2

0 · · · yp−1

l−1
).

Collecting all factors of xl, we can write

π(fi) = xki

l f̃i, π(hi) = x
k′

i

l h̃i.

Using the homogeneous multidegree assumption gives

ki + k′i = p− 1, f̃i, h̃i ∈ F [U ]P .

Thus π(f) = xp−1

l

∑r

i=1
f̃ih̃i. Furthermore,

f̃ := TrP (yzp−1yp−2

0 · · · yp−1

1−1) =

r∑

i=1

f̃ih̃i.

By the induction hypothesis, f̃ is indecomposable in F [U ]P . Suppose that one of the factors, say

f̃1 = c with c 6= 0. Then the multidegree of f1 is (0, . . . , 0, k1) with k1 < p. Hence f1 is a homoge-

neous element of degree less than p in F [V2,q−1]
P = F [xl, y

p
l −ylx

p−1

l ]. Thus f1 = cxk1

l . Therefore,

π(f1) = 0, giving f̃1 = 0, which contradicts f̃1 = c 6= 0. Thus, TrP (yzp−1yp−2

0 yp−1

1 · · · yp−1

l ) in

F [V ]P is indecomposable. 2

Suppose V ∼= V4,0 ⊕ V2,k ⊕⊕q−1

t=0mtV2,t,
∑q−1

t=0
mt = l. Choose a basis

x, y, z, w;x0, y0;x1, y1; . . . ;xl, yl

for V ∗, where x, y, z, w is a basis of V ∗

4,0 and x0, y0 is a basis of V ∗

2,k.

Lemma 3.3 TrP (zp−2wp−1yp−2

0 yp−1

1 · · · yp−1

l ) in F [V4,0⊕V2,k⊕⊕q−1

t=0mtV2,t]
P is indecomposable.

Proof The proof is by induction on l. When l = 0, we prove that TrP (zp−2wp−1yp−2

0 ) in

F [V4,0 ⊕ V2,k]
P is indecomposable. By way of contradiction, suppose that

f := TrP (zp−2wp−1yp−2

0 ) =

r∑

i=1

fihi, fi, hi ∈ F [V4,0 ⊕ V2,k]
P ,
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where 0 < deg(fi), deg(hi) < deg(f). We use a graded reverse lexicographic with w > z > y >

y0 > x > x0. Then LT(f) = z2p−3yp−2

0 . We may assume that LT(fihi) ≥ LT(fi+1hi+1) for

i = 1, . . . , r − 1. Clearly, either LT(f1h1) = z2p−3yp−2

0 or LT(f1h1) = LT(f2h2) > z2p−3yp−2

0 .

According to [13, Section 10.1] and [5, Proposition 1.1], F [V4,0⊕V2,k] is generated by 13 integral

invariants, NP (w), NP (y0) and the family of transfers TrP (wdzcybyb00 ) with 0 ≤ d, b0 ≤ p − 1,

0 ≤ c ≤ p− 2, b = 0 or 1, b+ c+d ≤ 2p− 3. Let S denote the collection of above invariants. The

elements in LT(S) of the form z2p−3yp−2

0 are {yp0 , w
p, zp−1+i, zp−1+iyj0} with i = 0, 1, . . . , p− 2;

j = 0, 1, . . . , p− 1. Thus z2p−3yp−2

0 is the indecomposable element of F [V4,0 ⊕V2,k]
P . Therefore,

LT(f1h1) = LT(f2h2) > z2p−3yp−2

0 .

Note that F [V4,0⊕V2,k] = F [V4,0]⊗F [V2,k] is bi-graded, the action of P respects this grading, and

all of our generators are homogeneous with respect to this grading. However, there are no mono-

mials with bi-degree (2p− 3, p− 2) which are greater than z2p−3yp−2

0 . Thus TrP (zp−2wp−1yp−2

0 )

is indecomposable. The induction step is essentially the same as the induction step in the proof

of Lemma 3.2. 2

Proposition 3.4 Let V be a faithful reduced G-module over a field F of characteristic p and V

does not contain 1-dimensional representation as a summand. Let s be the maximum dimension

of the indecomposable summands of V and P be the Sylow p subgroup of G. Then

(1) If s = 3 and V does not contain V3,j as a summand for any j ∈ {1, . . . , q− 1}, or if s > 3

and V does not contain Vk,j as a summand for any k ∈ {4, . . . , s} and any j ∈ {1, . . . , q − 1}, or

if V ∼= ⊕⊕q−1

t=1 mtV2,t,
∑q−1

t=1
mt > 2, then

β(F [V ]G) ≥ q(β(F [V ]P )− 1).

(2) Other cases, i.e., if V ∼= V2,j or V ∼= 2V2,j , or if s = 3 and at least one of the summands

of V is isomorphic to V3,j with j ∈ {1, . . . , q− 1}, or if s > 3 and at least one of summands of V

is isomorphic to Vk,j with k ∈ {4, . . . , s} and j ∈ {1, . . . , q − 1}, then

β(F [V ]G) ≥ qβ(F [V ]P ).

Proof (1) Using Lemmas 3.1–3.3 and [11, Theorem 6.3], the above conclusions can be obtained.

(2) Case 1. If s > 3 and at least one of summands of V contains Vk,j , where k ∈ {4, . . . , s}

and j ∈ {1, . . . , q − 1}, then decompose V as

V = Vr0,j0 ⊕ Vr1,j1 ⊕ · · · ⊕ Vrl,jl ,

where r0 ≥ 4, j0 ≥ 1, ri ≥ 2, i = 1, . . . , l. For each i = 0, 1, . . . , l, choose a distinguished variable

Xi ∈ V ∗

ri,ji
. Denote U = V4,j0 ⊕⊕l

i=1V2,ji . Choose a basis

x0, y0, z0, w0;x1, y1; . . . ;xl, yl

for U∗. We determine a P -equivariant surjection φ : V ∗ → U∗ by requiring that φ(X0) =

w0, φ(Xi) = yi for i = 1, . . . , l. This induces a P -equivariant surjection, which we also call φ

mapping F [V ] onto F [U ]. Thus φ(∆j(Xi)) = ∆jφ(Xi) for i = 0, 1, . . . , l and j = 0, 1, . . . , p− 1,

where ∆ = aq − 1. Restricting to invariants, we get an algebra map φ : F [V ]P → F [U ]P .
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Since φ is an algebra homomorphism and since

φ(TrP (∆(X0)
p−2Xp−1

0 Xp−1

1 · · ·Xp−1

l )) = TrP (zp−2

0 wp−1

0 yp−1

1 · · · yp−1

l ),

is indecomposable in F [U ]P by [5, Lemma 2.2], it follows that

TrP (∆(X0)
p−2Xp−1

0 Xp−1

1 · · ·Xp−1

l )

is indecomposable in F [V ]P . By Lemma 3.1, (TrP (∆(X0)
p−2Xp−1

0 Xp−1

1 · · ·Xp−1

l ))q is indecom-

posable in F [V ]G. Therefore, β(F [V ]G) ≥ q((l+ 1)(p− 1)+ p− 2), i.e., β(F [V ]G) ≥ qβ(F [V ]P ).

Case 2. If s = 3 and at least one of the summands of V is isomorphic to V3,j for j = 1, . . . , q−1,

then decompose V as

V = Vr0,j0 ⊕ Vr1,j1 ⊕ · · · ⊕ Vrl,jl ,

where r0 = 3, j0 ≥ 1, 3 ≥ ri ≥ 2, i = 1, . . . , l. For each i = 0, 1, . . . , l, choose a distinguished

variable yi ∈ V ∗

ri,ji
. By [5, Lemma 2.3] and Lemma 3.1, (TrP (∆(y0)y

p−1

0 yp−1

1 · · · yp−1

l ))q is inde-

composable in F [V ]G. Therefore, β(F [V ]G) ≥ q((l+1)(p− 1)+ 1), i.e., β(F [V ]G) ≥ qβ(F [V ]P ).

Case 3. If V = V2,j or V = 2V2,j for j = 1, . . . , q−1, then the proof can be obtained according

to Lemma 3.1 and the generating elements of F [V ]P . 2
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