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Abstract A partition reduction method is used to obtain new upper bounds for the inverses of

H-matrices and S-strictly diagonally dominant (S-SDD) matrices. The estimates are expressed

via the determinants of third order matrices. Numerical experiments with various random ma-

trices show that they are stable and better than the estimates presented in literatures. We use

these upper bounds to improve known error estimates for linear complementarity problems with

H-matrices and S-SDD matrices.
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1. Introduction

Linear complementarity problem LCP(M, q) consists in finding a vector x ≥ 0 such that

Mx+ q ≥ 0, xT(Mx+ q) = 0, (1.1)

or in proving that the problem has no solution. Linear complementarity problems are used

in Nash equilibrium point of bimatrix games, contact and free boundary problems for journal

bearing [1–3]. It is well known that an H-matrix with positive diagonals is a P -matrix, whose

principle submatrices are all positive. Moreover, the LCP(M, q) has a unique solution for any

q ∈ R
n if and only if M is a P -matrix [4]. Later on, Chen and Xiang [5] gave a practical error

bounds for LCP(M, q) with a P -matrix M :

‖x− x∗‖∞ ≤ max
d∈[0,1]n

‖(I −D +DM)−1‖∞‖r(x)‖∞, (1.2)

where x∗ is the exact solution of the LCP(M, q), r(x) = min{x,Mx + q}, D = diag(di) with

0 ≤ di ≤ 1. Since ‖r(x)‖∞ can be easily estimated, we focus on the bounds for

max
d∈[0,1]n

‖(I −D +DM)−1‖∞. (1.3)
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Note that various estimation of norm bounds for inverse matrices can be found in [6–12]. The

error bounds of LCPs can be derived by using such estimates. Then one tried to present com-

putable upper bounds of (1.3) for matrix M belonging to various subclasses of P -matrices,

such as B-matrices [13–15], doubly B-matrices [16], BS-matrices [17], B-Nekrasov matrices [18],

SB-matrices [19, 20], MB-matrices [21], Nekrasov matrices [22], S-Nekrasov and BS-Nekrasov

matrices [23], Σ-SDD matrix [24, 25], H-matrices [26], QN -matrices [27], S-QN matrices [28].

As H-matrices with positive diagonals are P -matrices, then the related LCP(M, q) has a

unique solution with error bounds (1.2). Though Garćıa-Esnaola and Peña [26] has presented a

comparison error bounds of LCPs for H-matrices, it is not accurate for the H-matrix M with

positive diagonal matrix D such that the diagonal dominance degree is very small. In 2013,

Garćıa-Esnaola and Peña [24] considered the LCP(M, q) with the matrix M being a Σ-SDD

with positive diagonals, and provided upper bounds of (1.3). After that in 2019, Wang and

Li [25] improved the results for S-SDD matrices in [24]. Actually, Σ-SDD matrix is just the

S-SDD matrix, which belongs to H-matrix [29, 30], defined as follows:

Definition 1.1 ([30]) Let A = (aij) ∈ Cn×n. If there is a ∅ 6= S ⊂ N := {1, 2, . . . , n} such that

for any i ∈ S and j ∈ Sc,
{
|aii| > rSi (A),

(|aii| − rSi (A))(|ajj | − rS
c

j (A)) > rS
c

i (A)rSj (A),

where Sc is the complement set of S via N, and

ri(A) :=
∑

i6=j∈N

|aij |, rSi (A) :=
∑

i6=j∈S

|aij |, rS
c

i (A) :=
∑

i6=j∈Sc

|aij |,

then A is an S-SDD matrix.

The diagonal dominance degree [31] is widely used in bounding the inverse of matrices and the

eigenvalues [32,33]. The known upper bounds forH-matrices [26] and S-SDD matrices [24,25] are

obtained by the fact that H-matrices and S-SDD matrix can be related to a strictly diagonally

dominant (SDD) matrix via a positive diagonal matrix [29, 30]. However, the existing upper

bounds are not sharp when the diagonal dominance degree of the related SDD matrix are very

small. While if the partition reduction method in [15] is used to estimating ‖A−1‖∞ for S-SDD

matrix A, it is more accurate and stable.

In this paper, we would first recall the partition reduction method for estimating the SDD

M -matrices. While for any H-matrix A, there exists a positive diagonal matrix D such that AD

is an SDD matrix, then ‖(AD)−1‖∞ can be well estimated, and we present the upper bounds

‖A−1‖∞ for H-matrices through the estimation of ‖(AD)−1‖∞. Furthermore, we use this upper

bound to obtain a new error bound of LCPs for H-matrix which seems to be more efficient

in random numerical experiments. In addition, S-SDD matrix is an H-matrix with explicit

expressed positive diagonal matrix, when our estimations are used for S-SDD matrix, new upper

bound and error bound for S-SDD matrices are proposed.

The rest of the paper are organized as follows: In Section 2, some basic definitions, lemmas

and associated theories are presented. In Section 3, we use the partition reduction method to
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obtain new upper bounds forH-matrix and S-SDD matrix and some random numerical examples

are presented to show the efficiency and accuracy of our results. In Section 4, we apply the new

obtained upper bounds for new error bounds for H-matrix including S-SDD matrices and some

random examples are presented.

2. Preliminaries

In this section, let us introduce notations, definitions and auxiliary results. If A = (aij),

N = {1, 2, . . . , n}, then the notation A ≥ 0 (A > 0) means that aij ≥ 0 (aij > 0) for all i, j.

Consequently, we write A ≥ B (A > 0) if A−B ≥ 0 (A−B > 0). Let R and C, denote the sets

of the real and complex numbers, respectively. Denote en = (1, 1, . . . , 1)T ∈ Rn.

Definition 2.1 ([34]) A matrix A = (aij) ∈ Cn×n is called a diagonally dominant (DD) matrix,

if

|aii| ≥ ri(A), i ∈ N, (2.1)

and strictly diagonally dominant (SDD) matrix if the inequalities in (2.1) all hold strictly. Further

more, if there is a positive diagonal matrix D such that AD is an SDD matrix, then A is called

a nonsingular H-matrix.

Definition 2.2 ([34]) A is called a nonsingular M -matrix if it can be expressed as A = sI −B,

where B ≥ 0 and s > ρ(B), where ρ(B) is the spectral radius of B.

Definition 2.3 ( [34]) A matrix A = (aij) is called an H-matrix if its comparison matrix

µ(A) = (ãij) is an M -matrix, where

ãij :=

{
|aij |, i = j,

−|aij |, i 6= j.

Lemma 2.4 ([35]) Suppose A is an H-matrix, then |A−1| ≤ {µ(A)}−1.

Lemma 2.5 ([15]) If A = (aij) ∈ Rn×n is a nonsingular M -matrix such that Ax ≤ b, then

x ≤ (
detA(1,b)

detA
, . . . ,

detA(n,b)

detA
)T.

Lemma 2.6 ([24]) Let A be an S-SDD matrix. Suppose W = diag(w1, . . . , wn) is a positive

diagonal matrix with

wi =

{
γ, i ∈ S

1, i ∈ Sc
, (2.2)

where 0 < γ ∈ IS , and

IS := (max
i∈S

rS
c

i (A)

|aii| − rSi (A)
,min
j∈Sc

|ajj | − rS
c

j (A)

rSj (A)
), (2.3)
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assuming that if rSj (A) = 0, then
|ajj |−rS

c

j (A)

rS
j
(A)

:= +∞. Then AW is a strictly diagonally dominant

matrix.

Remark 2.7 In general, the positive diagonal matrix W is not unique. For instance, for any

k ∈ R, kW is also such a positive diagonal matrix.

3. Upper bounds for the inverse of H-matrices including S-SDD matri-

ces

In this section, we would present the upper bound of S-SDD matrices by partition reduction

method. Firstly, let us give some notations: Let N(α1, α2, . . . , αk) be a partition of the set N such

that α1, α2, . . . , αk are nonempty subsets separated from each other. In particular, for k = 3 we

have α1 ∪ α2 ∪ α3 = N and α1 ∩ α2 = ∅, α1 ∩ α3 = ∅, α2 ∩ α3 = ∅. In general, we denote by

P(Nk) the set of all partitions separating N into k parts. In addition, let A(j,b) (j ∈ N, b ∈ R
n)

be the matrix obtained from A ∈ Rn×n by replacing its j-th column by b.

Lemma 3.1 ([15]) If A = (aij) ∈ Rn×n, n ≥ 3, is an SDD M -matrix, then

‖A−1‖∞ ≤ min
N(α1,α2,α3)∈P(N3)

max
p∈α1

q∈α2

r∈α3

{detS(1,e3)
(p,q,r)

detS(p,q,r)
,
detS

(2,e3)
(p,q,r)

detS(p,q,r)
,
detS

(3,e3)
(p,q,r)

detS(p,q,r)

}
, (3.1)

where

S(p,q,r) =




∑
j∈α1

apj
∑

j∈α2

apj
∑

j∈α3

apj

∑
j∈α1

aqj
∑

j∈α2

aqj
∑

j∈α3

aqj

∑
j∈α1

arj
∑

j∈α2

arj
∑

j∈α3

arj




. (3.2)

Theorem 3.2 Let A = (aij) ∈ Rn×n be an M -matrix, and T = diag(t1, . . . , tn) be a positive

diagonal matrix such that AT is an SDD matrix. Then

‖A−1‖∞ ≤

min
N(α1,α2,α3)∈P(N3)

max
p∈α1

q∈α2

r∈α3

{
max
i∈α1

ti
detST

(1,e3)
(p,q,r)

detST(p,q,r)
,max
i∈α2

ti
detST

(2,e3)
(p,q,r)

detST(p,q,r)
,max
i∈α3

ti
detST

(3,e3)
(p,q,r)

detST(p,q,r)

}
, (3.3)

where

ST(p,q,r) =




|app|tp −
∑

p6=j∈α1

|apj |tj −
∑

j∈α2

|apj |tj −
∑

j∈α3

|apj |tj

−
∑

j∈α1

|aqj |tj |aqq|tq −
∑

q 6=j∈α2

|aqj |tj −
∑

j∈α3

|aqj |tj

−
∑

j∈α1

|arj |tj −
∑

j∈α2

|arj|tj |arr|tr −
∑

r 6=j∈α3

|arj|tj




. (3.4)



174 Yebo XIONG

Proof Since A is an M -matrix, A−1 ≥ 0 and there exists a positive diagonal matrix T such

that AT is an SDD M -matrix. At first, let us consider the linear equation

ATx = en, (3.5)

then when 0 ≤ x = (AT )−1en ≤




y1
...

yn


, one immediately gets:

A−1en ≤ T




y1
...

yn


 =




t1y1
...

tnyn


 .

Moreover,

‖A−1‖∞ = ‖A−1en‖∞ ≤

∥∥∥∥∥∥∥∥




t1y1
...

tnyn




∥∥∥∥∥∥∥∥
∞

. (3.6)

Recall the partition reduction method for SDD M -matrix. For any partition N(α1, α2, α3),

considering the equation (3.5), let xp = maxi∈α1{xi}, xq = maxi∈α2{xi}, and xr = maxi∈α3{xi}.

Then



1

1

1


 ≥




|app|tp −
∑

p6=j∈α1

|apj |tj −
∑

j∈α2

|apj |tj −
∑

j∈α3

|apj |tj

−
∑

j∈α1

|aqj |tj |aqq|tq −
∑

q 6=j∈α2

|aqj |tj −
∑

j∈α3

|aqj |tj

−
∑

j∈α1

|arj |tj −
∑

j∈α2

|arj |tj |arr|tr −
∑

r 6=j∈α3

|arj |tj






xp

xq

xr


 ,

(3.7)

which by Lemma 2.5 illustrates that



xp

xq

xr


 ≤




detST
(1,e3)

(p,q,r)

detST(p,q,r)

detST
(2,e3)

(p,q,r)

detST(p,q,r)

detST
(3,e3)

(p,q,r)

detST(p,q,r)




. (3.8)

Hence

xi ≤





xp ≤
detST

(1,e3)
(p,q,r)

detST(p,q,r)
, i ∈ α1,

xq ≤
detST

(2,e3)
(p,q,r)

detST(p,q,r)
, i ∈ α2,

xr ≤
detST

(3,e3)
(p,q,r)

detST(p,q,r)
, i ∈ α3.

(3.9)
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Then according to (3.6),

‖A−1‖∞ ≤ max
{
max
i∈α1

ti
detST

(1,e3)
(p,q,r)

detST(p,q,r)
,max
i∈α2

ti
detST

(2,e3)
(p,q,r)

detST(p,q,r)
,max
i∈α3

ti
detST

(3,e3)
(p,q,r)

detST(p,q,r)

}
. (3.10)

At last, applying this method to all partitions of P(N3), we obtain (3.3). 2

Remark 3.3 In particular, if A is an SDD matrix, then T = I is an identity matrix, and the

bound reduces to the result in Lemma 3.1. However, for any M -matrix, it is not easy to give an

explicit expression of the positive diagonal matrix, lots of the iterative algorithm for H-matrix

present the numerical positive diagonal matrix. Nevertheless, as long as we obtain the positive

diagonal matrix, we could apply the estimation in (3.3) to measure ‖A−1‖∞ for M -matrix.

By Lemma 2.6, the explicit expression of positive matrix W is proposed for S-SDD matrix

A such that AW is an SDD matrix. Then a new upper bound for S-SDD matrix is obtained.

Corollary 3.4 Let A = (aij) ∈ Rn×n be an S-SDD matrix, and W = diag(w1, . . . , wn) be a

positive diagonal matrix defined as that in (2.2). Then

‖A−1‖∞

≤ min
N(α1,α2,α3)∈P(N3)

max
p∈α1

q∈α2

r∈α3

{
max
i∈α1

wi

detSW
(1,e3)
(p,q,r)

detSW(p,q,r)
,max
i∈α2

wi

detSW
(2,e3)
(p,q,r)

detSW(p,q,r)
,max
i∈α3

wi

detSW
(3,e3)
(p,q,r)

detSW(p,q,r)

}
,

(3.11)

where

SW(p,q,r) =




|app|wp −
∑

p6=j∈α1

|apj |wj −
∑

j∈α2

|apj |wj −
∑

j∈α3

|apj |wj

−
∑

j∈α1

|aqj |wj |aqq|wq −
∑

q 6=j∈α2

|aqj |wj −
∑

j∈α3

|aqj |wj

−
∑

j∈α1

|arj|wj −
∑

j∈α2

|arj |wj |arr|wr −
∑

r 6=j∈α3

|arj|wj




.

For large H-matrices and S-SDD matrices A, we do not compute the bounds for different

partitions. Instead, we choose two partitions and compute the corresponding bounds in (3.3)

and (3.11). Such experiments are able to show the effectiveness and superiority of our method.

Besides, in numerical experiments, we will sort the row indexes from smallest to largest in order

of diagonal dominance degree for getting i1, i2, . . . , in, and then present two partitions as follows,

• partition 1: α1 = {i1, i2, . . . , i⌊n
3 ⌋}, α2 = {i⌊n

3 ⌋+1, . . . , i⌊ 2n
3 ⌋}, α3 = {i⌊ 2n

3 ⌋+1, . . . , in}

• partition 2: α̃1 = {i1, i4, . . . , i3k−2}, α̃2 = {i2, i5, . . . , i3k−1}, α̃3 = {i3, i6, . . . , i3k}.

In addition, for the positive diagonal matrix W = diag(w1, . . . , wn) related to S-SDD matrix,

we just make the parameter

γ =
1

2

(
max
i∈S

rS
c

i (A)

|aii| − rSi (A)
+ min

j∈Sc

|ajj | − rS
c

j (A)

rSj (A)

)
. (3.12)
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For comparison, we recall some upper bound of ‖A−1‖∞ for H-matrices and S-SDD matrices

[36], respectively:

• If A = (aij) ∈ Rn×n is an H-matrix with positive diagonal matrix D = diag(d1, . . . , dn)

such that AD is an SDD matrix, then

‖A−1‖∞ ≤ max
i

max
k

dk

|aii|di −
∑
j 6=i

|aij |dj
. (3.13)

• If A = (aij) ∈ Rn×n is an S-SDD matrix, then

‖A−1‖∞ ≤ min
S∈S(A)

max
i∈S,j∈Sc

|aii| − rSi (A) + rS
c

j (A)(
|aii| − rSi (A)

)(
|ajj | − rS

c

j (A)
)
− rS

c

i (A)rSj (A)
. (3.14)

Next, let us see some random numerical experiments for H-matrices.

Example 3.5 Let A = (aij) ∈ Rn×n n ≥ 4 be a random H-matrix generated by the following

matlab codes:

A = −randi([1, 100], n, n), γ = 0.2 + exprnd(3, n, 1), R = sum(A′), d = 0.2 + rand(n, 1),

for i = 1 : n

A(i, i) = R(i)−A(i, i) + γ(i);

end

A = A ∗ diag(d).

Then A is an H-matrix with positive diagonal matrix D̃ = diag( 1
d1
, . . . , 1

dn
) such that AD̃ is an

SDD matrix. In this example, we increase n from 4 to 100, and randomly generate H-matrices

with positive diagonal matrix. For each random H-matrix, we compute the upper bounds (3.13)

and (3.3), and plot the results in Figure 1.

0 20 40 60 80 100
0

5

10

15

20

25
our bound by partition 1
our bound by partition 2
comparing bound
inverse norm

Figure 1 The estimations for ‖A−1‖∞ of some random H-matrices

From the results in the picture, our bounds are sharper and stable, especially when the size

of the matrix is large, our results are still accurate and stable.

Next, let us consider the S-SDD matrix. Recall the numerical experiment in [36].
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Example 3.6 Suppose

A =




9.2 −1.3 −2.1 −0.5 −3.3 −2.5

−1.6 8.5 −0.3 −2.7 −1.1 −0.6

−0.3 −4.3 9.8 −1.2 −0.5 −2.1

−1.7 −0.9 −2.5 7.8 −0.3 −1.4

−2.9 −0.1 −2.1 −1.3 8.8 −2.1

−3.1 −1.5 −0.2 −1.6 −0.7 7.6




,

then A is not an SDD matrix but an S-SDD matix with T (A) = {1} and ‖A−1‖∞ = 1.4663. By

simple computation, the subset S is in choice of {2, 3}, {2, 3, 4}, {3, 5, 6}, {2, 3, 4, 6}, {2, 3, 5, 6},

{3, 4, 5, 6}, {2, 3, 4, 5, 6}, and the upper bounds computed by (3.14) and (3.11) are listed in Table

1.

S Morǎca’s bound Our bound by partition 1 Our bound by partition 2

{2, 3} 4.4279 1.8548 2.6876

{2, 3, 4} 4.8824 1.7176 2.6914

{3, 5, 6} 178.5714 3.0007 36.2781

{2, 3, 4, 6} 10.1905 1.9425 3.8217

{2, 3, 5, 6} 26.8627 2.5912 11.1112

{3, 4, 5, 6} 13.4483 2.5854 9.6983

{2, 3, 4, 5, 6} 9.8473 2.2415 5.6797

Table 1 Morǎca’s bound and our bound for S-SDD matrix with different S

From the results in Table 1, it is obvious that our upper bounds are more accurate. Thus

this example illustrates that our results are sharper in some cases.

4. Error bounds of linear complementarity problem for H-matrices in-

cluding S-SDD matrices

In this section, we would apply the new upper bound for H-matrices and S-SDD matri-

ces to the error bound of linear complementarity problem for H-matrices and S-SDD matrix,

respectively.

Before presenting our error bounds, we recall a useful lemma.

Lemma 4.1 ([15]) Considering an SDD M -matrix

A =




a11 −a12 −a13

−a21 a22 −a23

−a31 −a32 a33


 ,

we set

h1(x, y, z) :=
det(I −D +DA)(1,e3)

det(I −D +DA)
,
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h2(x, y, z) :=
det(I −D +DA)(3,e3)

det(I −D +DA)
,

h3(x, y, z) :=
det(I −D +DA)(2,e3)

det(I −D +DA)
, (4.1)

where D = diag(x, y, z) and 0 ≤ x, y, z ≤ 1. Then

h1(x, y, z) ≤ max{h1(0, 0, 0), h1(1, 0, 0), h1(1, 0, 1), h1(1, 1, 0), h1(1, 1, 1)},

h2(x, y, z) ≤ max{h2(0, 0, 0), h2(0, 1, 0), h2(1, 1, 0), h2(0, 1, 1), h2(1, 1, 1)},

h3(x, y, z) ≤ max{h3(0, 0, 0), h3(0, 0, 1), h3(1, 0, 1), h3(0, 1, 1), h3(1, 1, 1)}.

As introduced in Section 1, we need to consider (1.3) when M is an H-matrix or S-SDD

matrix. At first, let us see some conclusions for I −D +DM if M is an H-matrix.

Theorem 4.2 Let M = (mij) ∈ Rn×n with positive diagonals be an H-matrix. Then

M̃ = I − D + DM := (m̃ij) is also an H-matrix, where D = diag(d1, . . . , dn), 0 ≤ di ≤ 1,

1 ≤ i ≤ n.

Proof As M = (mij) is an H-matrix, then there exists a positive diagonal matrix P =

diag(p1, . . . , pn) such that MP is an SDD matrix,

|mii|pi >
∑

j 6=i

|mij |pj , i = 1, 2, . . . , n. (4.2)

While considering M̃ = I −D +DM := (m̃ij), for any i ∈ N,

|m̃ii|pi −
∑

j 6=i

|m̃ij |pj =|1− di +miidi|pi −
∑

j 6=i

|mijdi|pj

≥|mii|dipi −
∑

j 6=i

|mij |dipj (4.3)

=di(|mii|pi −
∑

j 6=i

|mij |pj)

≥0. (4.4)

It is worthy to point out that the equivalence in (4.3) holds if and only di = 1, and the equivalence

in (4.4) holds if and only if di = 0, thus

|m̃ii|pi −
∑

j 6=i

|m̃ij |pj > 0, i ∈ N, (4.5)

which implies M̃ = I −D +DM is still an H-matrix. 2

Lemma 4.3 Suppose A is a nonsingular M -matrix with a positive diagonal matrix T =

diag(t1, t2, t3) such that AT is an SDD matrix, where ti ≥ 1, i = 1, 2, 3 and

A =




|a11| −|a12| −|a13|

−|a21| |a22| −|a23|

−|a31| −|a32| |a33|


 , (4.6)
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then

det((I −D +DA)T )(1,e3)

det(I −D +DA)T
≤

det(I −D +DAT )(1,e3)

det(I −D +DAT )
,

det((I −D +DA)T )(2,e3)

det(I −D +DA)T
≤

det(I −D +DAT )(1,e3)

det(I −D +DAT )
,

det((I −D +DA)T )(3,e3)

det(I −D +DA)T
≤

det(I −D +DAT )(1,e3)

det(I −D +DAT )
,

where D = diag(d1, . . . , dn) with 0 ≤ di ≤ 1, i = 1, 2, . . . , n.

Proof Consider the linear equation

(I −D +DA)Tx = e3, (4.7)

by Theorem 4.2, (I − D + DA)T is an SDD M -matrix, so there is a unique solution for (4.7)

denoted as

xi =
det((I −D +DA)T )(i,e3)

det(I −D +DA)T
≥ 0, i = 1, 2, 3.

Furthermore, consider the i-th row of (4.7), as ti ≥ 1 and xi ≥ 0, i = 1, 2, 3, then

1 = (1− di + di|aii|)tixi −
∑

j 6=i

di|aij |tjxj ≤ 1− di + di|aii|tixi −
∑

j 6=i

di|aij |tjxj , (4.8)

and (4.8) yields

(I −D +DAT )x ≤ e3. (4.9)

It is easy to know, I −D +DAT is still an SDD M -matrix because AT is an SDD M -matrix.

Thus by Lemma 2.5,

det((I −D +DA)T )(i,e3)

det(I −D +DA)T
= xi ≤

det(I −D +DAT )(i,e3)

det(I −D +DAT )
, i = 1, 2, 3. (4.10)

Therefore, the proof is completed. 2

Remark 4.4 In fact, for an H-matrix A, if there is positive diagonal matrix T such that AT is

an SDD matrix, then a scalar matrix kT (k 6= 0) is also a positive diagonal matrix T such that

A(kT ) is an SDD matrix. Thus, it is attainable to make T ≥ I.

Therefore, by Theorems 4.2, 3.2 and Lemma 4.3, our error bound of LCPs for H-matrix is

proposed.

Theorem 4.5 Let M = (mij) ∈ Rn×n be an H-matrix with positive diagonals with positive

diagonal matrix T = diag(t1, . . . , tn) such that MT is an SDD matrix. Then

max
d∈[0,1]n

‖(I −D +DM)−1‖∞

≤ min
N(α1,α2,α3)∈P(N3)

{
max
p∈α1

q∈α2

r∈α3

{
max

k∈{1,2,3}

{
max
i∈αk

ti · max
x,y,z∈{0,1}

h
(p,q,r)
k (x, y, z)

}}}
, (4.11)



180 Yebo XIONG

where

h
(p,q,r)
k (x, y, z) =

det(I −D +DMT )(k,e3)

det(I −D +DMT )
, k = 1, 2, 3

with the matrix

MT =




|mpp|tp −
∑

p6=j∈α1

|mpj |tj −
∑

j∈α2

|mpj |tj −
∑

j∈α3

|mpj |tj

−
∑

j∈α1

|mqj |tj |mqq|tq −
∑

q 6=j∈α2

|mqj |tj −
∑

j∈α3

|mqj |tj

−
∑

j∈α1

|mrj |tj −
∑

j∈α2

|mrj|tj |mrr|tr −
∑

r 6=j∈α3

|mrj |tj




.

(4.12)

Proof By the proof of Theorem 4.2, I −D +DM is an H-matrix with the positive diagonal

matrix T such that (I −D +DM)T is an SDD matrix, then by Theorem 3.2,

‖(I −D +DM)−1‖∞

≤ min
N(α1,α2,α3)∈P(N3)

max
p∈α1

q∈α2

r∈α3

{
max

k∈{1,2,3}

{
max
i∈αk

ti
det((I −D +DM)T )(k,e3)

det(I −D +DM)T

}}

≤ min
N(α1,α2,α3)∈P(N3)

max
p∈α1

q∈α2

r∈α3

{
max

k∈{1,2,3}

{
max
i∈αk

ti
det(I −D +DMT )(k,e3)

det(I −D +DMT )

}}

with MT in (4.12). Then by Lemma 4.3, the proof is completed. 2

Next, let us consider the case that M is an S-SDD matrix.

Theorem 4.6 Let M = (mij) ∈ Rn×n with positive diagonals be an S-SDD matrix. Then

M̃ = I −D +DM := (m̃ij) is also an S-SDD matrix, where D = diag(d1, . . . , dn), 0 ≤ di ≤ 1,

1 ≤ i ≤ n.

Proof As for

m̃ij =

{
1− di + dimii, i = j;

dimij , i 6= j,

then for any i ∈ S,

|m̃ii| − rSi (M̃) = 1− di + dimii − dir
S
i (M) ≥ di(mii − rSi (M)) ≥ 0. (4.13)

And for any i ∈ S, j ∈ Sc,

(|m̃ii| − rSi (M̃))(m̃jj | − rS
c

j (M̃)) = (1− di + dimii − dir
S
i (M))(1− dj + djmjj − djr

Sc

j (M))

≥ di(mii − rSi (M))dj(mjj − rS
c

j (M)) ≥ didjr
Sc

i (M)rSj (M)

= rS
c

i (M̃)rSj (M̃). (4.14)

It is worth pointing out that the equality of two inequalities in (4.13) and (4.18) cannot hold at

the same time. Then for any i ∈ S, j ∈ Sc,
{
|m̃ii| − rSi (M̃) > 0,

(|m̃ii| − rSi (M̃))(m̃jj | − rS
c

j (M̃)) > rS
c

i (M̃)rSj (M̃).
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Thus by Definition 1.1, M̃ is also an S-SDD matrix. 2

By Theorem 4.2, for any S-SDD matrix A, if the positive diagonal matrix W defined in

(2.2) makes AW an SDD matrix, then (I − D + DM)W is also an SDD matrix, where D =

diag(d1, . . . , dn) with 0 ≤ di ≤ 1, i = 1, 2, . . . , n. In addition, the similar results in Lemma 4.3

are also established for S-SDD matrix. Thus we obtain a new error bound of LCPs for S-SDD

matrices.

Theorem 4.7 Let M = (mij) ∈ Rn×n be an S-SDD matrices with positive diagonals. IS is

defined as that in (2.3) and 0 < γ ∈ IS , denote W = diag(w1, . . . , wn), where

wi =

{
γsgn(γ−1), i ∈ S;

γsgn(γ−1)−1, i ∈ Sc,
(4.15)

then

max
d∈[0,1]n

‖(I −D +DM)−1‖∞

≤ min
N(α1,α2,α3)∈P(N3)

{
max
p∈α1

q∈α2

r∈α3

{
max

k∈{1,2,3}

{
max
i∈αk

wi · max
x,y,z∈{0,1}

g
(p,q,r)
k (x, y, z)

}}}
, (4.16)

where sgn(x) is the sign function, and

g
(p,q,r)
k (x, y, z) =

det(I −D +DMW )(k,e3)

det(I −D +DMW )
, k = 1, 2, 3 (4.17)

with

MW =




|mpp|wp −
∑

p6=j∈α1

|mpj |wj −
∑

j∈α2

|mpj |wj −
∑

j∈α3

|mpj |wj

−
∑

j∈α1

|mqj |wj |mqq|wq −
∑

q 6=j∈α2

|mqj |wj −
∑

j∈α3

|mqj |wj

−
∑

j∈α1

|mrj|wj −
∑

j∈α2

|mrj |wj |mrr|wr −
∑

r 6=j∈α3

|mrj |wj




.

(4.18)

At last, we will present some numerical experiments to show the efficiency and superiority

of our error bounds. When compared with existing results, we recall some error bounds for

H-matrices and S-SDD matrices as follows.

• Garćıa-Esnaola and Peña [26] presented an error bound of LCPs for H-matrix M = (mij)

with positive diagonal matrix T = diag(ti) such that MT is an SDD matrix as follows:

max
d∈[0,1]n

‖(I −D +DM)−1‖∞ ≤ max
{ max

i
ti

min
i
{βi}

,
max

i
ti

min
i
{ti}

}
(4.19)

where βi = |mii|ti −
∑

j 6=i |mij |tj .

• Garćıa-Esnaola and Peña [24] presented an error bound of LCPs for S-SDD matrices as

follows:

max
d∈[0,1]n

‖(I −D +DM)−1‖∞ ≤





max{
γ

β̄
, γ}, γ > 1,

max{
1

β̄
,
1

γ
}, γ < 1,

(4.20)
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where W = diag(w1, w2, . . . , wn) with wi =

{
γ, i ∈ S

1, i ∈ Sc
, γ ∈ IS and β̄ = mini∈N |aii|wi −

∑
j 6=i |aij |wj .

In the experiments, we just choose two partitions as that in the numerical experiments of

Section 3 and make the parameter γ as that in (3.12).

Recalling (1.2), we first compute a numerical solution to LCP(M, q), because it exists in

r(x) = min{x,Mx + q}. In the experiments, we apply the modulus-based matrix splitting

iteration method [1] to obtain the numerical solution.

Algorithm 1 ([1]) (Modulus-Based Matrix Splitting Iteration Method)

1. Let M = Q1−Q2 be a splitting of the matrix M ∈ Rn×n, Λ be a positive diagonal matrix,

and η be a positive constant.

2. Given an initial vector y(1) ∈ Rn, determine y(k+1) ∈ Rn from the system

(Λ +Q1)y
(k+1) = Q2y

(k) + (Λ−M)|y(k)| − ηq, k = 1, 2, . . . ,

set

x(k) :=
1

η
(y(k) + |y(k)|), k = 1, 2, . . . .

3. Go until the sequence {x(k)} converges.

Finding a numerical solution x of LCP(M, q) by Algorithm 1, we obtain r(x) = min{x,Mx+

q}. Combining upper bounds for maxd∈[0,1]n ‖(I −D +DM)−1‖∞ leads to the error estimates

for LCP(M, q) in (1.2).

Example 4.8 Let M = (mij) ∈ Rn×n be a random H-matrix generated by matlab code:

M = −randi([1, 100], n, n), R = sum(M ′), γ = 0.2 + abs(exprnd(3, n, 1)), d = 0.2 + rand(n, 1)

for i = 1 : n

M(i, i) = M(i, i)−R(i) + γ(i)

end

M=M*diag(d)

q = −M · x, where x = (2, 2, 2, . . . , 2)T.

Then M is an H-matrix with positive matrix D = diag( 1
d1
, . . . , 1

dn
) such that MD is an SDD

matrix. In addition, the exact solution of LCP(M, q) is x = (2, 2, . . . , 2). We will compute the

numerical solution x∗ of LCP(M, q) by Algorithm 1, and measure the real error as ‖x− x∗‖∞.

In addition, we would compute the error bounds by (4.20) and (4.16). Here, we increase the size

of matrix n from 5 to 100, and all results are plotted in Figure 2. For better observing difference

between our bounds and the existing one, we plot the natural logarithm for all error bounds.
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Figure 2 The estimations of ‖(I −D +DM)−1‖∞ for H-matrix M with increasing orders

From Figure 2, our error bounds are efficiency and accuracy, and as long as the size of matrix

M increases, our error bounds are also more stable than existing ones. This example illustrates

that our error bounds are more accurate and stable in some cases.

In the rest examples, we only consider the upper bounds of ‖(I −D +DM)−1‖∞. Firstly,

let us see the case for some random H-matrices M .

Example 4.9 We generate some random H-matrices by the following matlab code:

A = −randi([1, 100], n, n), γ = 0.01 + exprnd(3, n, 1), R = sum(A′), d = 0.02 + rand(n, 1),

for i = 1 : n

A(i, i) = A(i, i)−R(i) + γ(i);

end

A = A ∗ diag(d).

Then A is an H-matrix with positive diagonal matrix D̃ = diag( 1
d1
, . . . , 1

dn
) such that AD̃ is an

SDD matrix. Then the upper bounds for ‖(I −D +DM)−1‖∞ computed by (4.20) and (4.16)

are plotted in Figure 3 with parameter γ in (3.12). From the results in Figure 3, it is not hard

to see that our results are sharper and more stable, which shows the efficiency and superiority

of our result.

Example 4.10 Consider the S-SDD matrix in the Example in [24],

M =




3 −1 0 0 −1 0

−1 5 −1 −1 0 −1

−2 −1 7 −1 −2 0

− 1
2 − 1

2 − 1
4 3 −1 −1

− 2
5 − 1

5 − 1
2 −1 6 −3

− 1
3 − 2

5 − 2
5 −1 −1 3




.

Take the set S = {1, 2, 3} and Sc = {4, 5, 6}. Then IS = (34 ,
4
5 ). We choose 0 < γ ∈ IS , and

compute bounds for ‖(I −D+DM)−1‖∞ by (4.20) and (4.16) with increasing γ, all bounds are
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plotted in Figure 4. From the results in Figure 4, our bounds are more accurate with the same

γ. Furthermore, our results may have not attained the smallest upper bounds. Thus our error

bound is more efficient in some cases.
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Figure 3 The estimations of ‖(I −D +DM)−1‖∞ for H-matrix M with increasing orders
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Taking S = {4, 5, 6} and Sc = {1, 2, 3}, we have IS = (54 ,
4
3 ). Similarly, we plot all results in

Figure 5. From the results in Figure 5, our error bounds are also of more efficiency and accuracy.

It also shows the superiority of our results.

5. Concluding remarks

By partition reduction method, we present new upper bounds of the inverse of H-matrices

including S-SDD matrices, which are more accurate in some cases. When we apply the upper

bound to error bound of LCPs, new error bounds of LCPs for H-matrices and S-SDD matrices

are presented, and they are also sharper than existing ones in some cases.

Acknowledgements We thank the referees for their time and comments.

References

[1] Zhongzhi BAI. Modulus-based matrix splitting iteration methods for linear complementarity problems. Nu-
mer. Linear Algebra Appl., 2010, 17(6): 917–933.

[2] Xiaojun CHEN, Shuhuang XIANG. Perturbation bounds of P -matrix linear complementarity problems.
SIAM J. Optim., 2007, 18(4): 1250–1265.
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