Embedding Tensors on 3-Hom-Lie Algebras

Wen TENG ${ }^{1, *}$, Jiulin JIN ${ }^{2}$, Yu ZHANG ${ }^{1}$
1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guizhou 550025, P. R. China;
2. School of Science, Guiyang University, Guizhou 550005, P. R. China

Abstract

In this paper, we introduce the notion of embedding tensors on 3-Hom-Lie algebras and show that embedding tensors induce naturally 3 -Hom-Leibniz algebras. Moreover, the cohomology theory of embedding tensors on 3-Hom-Lie algebras is defined. As an application, we show that if two linear deformations of an embedding tensor on a 3-Hom-Lie algebra are equivalent, then their infinitesimals belong to the same cohomology class in the first cohomology group.

Keywords 3-Hom-Lie algebra; embedding tensor; representation; cohomology; deformation
MR(2020) Subject Classification 17A42; 17B40; 17B56; 17B61

1. Introduction

The concept of embedded tensors provides a useful tool on the construction of supergravity theories [1] and higher gauge theories [2]. The embedding tensor is called the average operator in mathematics. Aguiar [3] studied the average operator on the associative algebra and Lie algebra. Later, the deformation and cohomology theory of embedding tensors of associative algebra, Lie algebra and 3-Lie algebra were given in [4-6]. Recently, Das and Makhlouf [7] introduced the embedding tensor on Hom-Lie algebra, and studied the related properties.

The aim of this paper is to extend the concept of embedded tensors of 3-Lie algebras to Homtype algebras. Hom-Lie algebras were introduced by Hartwig, Larsson and Silvestrov [8] in the study of q-deformations of the Witt and Virasoro algebra. In the last fifteen years, Hom-type algebras have attracted extensive attention from scholars [7, 9-15]. In addition, Filippov [16] introduced 3-Lie algebra and more general n-Lie algebra, which can be regarded as a generalization of Lie algebra to higher algebra. In particular, 3-Lie algebras play an important role in string theory [17]. In [18], n-Hom-Lie algebras and various generalizations of n-ary algebras

[^0]are considered, and the representation and cohomology of n-Hom-Lie algebras are first studied in [19].

This paper is organized as follows. In Section 2, we recall the definitions of 3-Hom-Lie algebras. Then we introduce the notion of an embedding tensor on a 3-Hom-Lie algebra, which naturally induces a 3 -Hom-Leibniz algebra. In Section 3, we introduce the representation and cohomology theory of embedding tensor on 3-Hom-Lie algebra. In Section 4, we study linear deformations of embedding tensors on 3-Hom-Lie algebras, and show that if two linear deformations of an embedding tensor on a 3 -Hom Lie algebra are equivalent, then their infinitesimals belong to the same cohomology class in the first cohomology group.

In this paper, all vector spaces are considered over a field \mathbb{K} of characteristic 0 .

2. Embedding tensors on 3-Hom-Lie algebras

In this section, we recall some basic definitions of 3-Hom-Lie algebras, Hom-Leibniz algebras and 3 -Hom-Leibniz algebras. Then we introduce embedding tensors on 3-Hom-Lie algebras. We show that an embedding tensor naturally gives rise to a 3 -Hom-Leibniz algebra structure. Finally, we provide some examples of embedding tensors on 3-Hom-Lie algebras.

Definition 2.1 ([18]) A 3-Hom-Lie algebra is a triple ($L,[\cdot, \cdot, \cdot], \alpha$) consisting of a vector space L, a trilinear skew-symmetric mapping $[\cdot, \cdot, \cdot]: L \times L \times L \rightarrow L$, and a linear map $\alpha: L \rightarrow L$ satisfying $\alpha([x, y, z])=[\alpha(x), \alpha(y), \alpha(z)]$ and the Hom-Filippov-Jacobi identity:

$$
\begin{equation*}
[\alpha(a), \alpha(b),[x, y, z]]=[[a, b, x], \alpha(y), \alpha(z)]+[\alpha(x),[a, b, y], \alpha(z)]+[\alpha(x), \alpha(y),[a, b, z]], \tag{2.1}
\end{equation*}
$$

for any $a, b, x, y, z \in L$. Furthermore, if $\alpha: L \rightarrow L$ is a vector space automorphism of L, then the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ is called a regular 3-Hom-Lie algebra.

A homomorphism between two 3-Hom-Lie algebras $(L,[\cdot, \cdot, \cdot], \alpha)$ and $\left(L^{\prime},[\cdot, \cdot, \cdot]^{\prime}, \alpha^{\prime}\right)$ is a linear $\operatorname{map} \psi: L \rightarrow L^{\prime}$ satisfying $\psi \circ \alpha=\alpha^{\prime} \circ \psi$ and

$$
\psi([x, y, z])=[\psi(x), \psi(y), \psi(z)]^{\prime}, \quad \forall x, y, z \in L
$$

In particular, if ψ is nondegenerate, then ψ is called an isomorphism from L to L^{\prime}.
Definition 2.2 ([12]) A Hom-Leibniz algebra is a vector space L together with a bracket operation $[\cdot, \cdot]: L \times L \rightarrow L$ and a linear map $\alpha: L \rightarrow L$ satisfying $\alpha([x, y])=[\alpha(x), \alpha(y)]$ such that

$$
[\alpha(x),[y, z]]=[[x, y], \alpha(z)]+[\alpha(y),[x, z]],
$$

for any $x, y, z \in L$.
Let $(L,[\cdot, \cdot, \cdot], \alpha)$ be a 3 -Hom-Lie algebra. Then the elements in $\wedge^{2} L$ are called fundamental objects of the 3 -Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$. There is a bilinear operation $[\cdot, \cdot]^{\prime}$ on $\wedge^{2} L$, which is given by

$$
[X, Y]^{\prime}=\left[x_{1}, x_{2}, y_{1}\right] \wedge \alpha\left(y_{2}\right)+\alpha\left(y_{1}\right) \wedge\left[x_{1}, x_{2}, y_{2}\right], \quad \forall X=x_{1} \wedge x_{2}, Y=y_{1} \wedge y_{2} \in \wedge^{2} L
$$

and a linear map $\tilde{\alpha}$ on $\wedge^{2} L$ is defined by $\tilde{\alpha}(X)=\alpha\left(x_{1}\right) \wedge \alpha\left(x_{2}\right)$. Clearly, $\left(\wedge^{2} L,[\cdot, \cdot]^{\prime}, \tilde{\alpha}\right)$ is a Hom-Leibniz algebra [20].

Definition 2.3 ([11]) A representation of a 3-Hom-Lie algebra ($L,[\cdot, \cdot, \cdot], \alpha$) on a vector space V with respect to $\beta \in \operatorname{End}(V)$ is a skew-symmetric linear map $\rho: \wedge^{2} L \rightarrow \operatorname{End}(V)$ such that

$$
\begin{align*}
& \rho(\alpha(x), \alpha(y)) \circ \beta=\beta \circ \rho(x, y) \tag{2.2}\\
& \rho(\alpha(x), \alpha(y)) \rho(a, b)-\rho(\alpha(a), \alpha(b)) \rho(x, y)=(\rho([x, y, a], \alpha(b))-\rho([x, y, b], \alpha(a))) \circ \beta \tag{2.3}\\
& \rho([x, y, a], \alpha(b)) \circ \beta-\rho(\alpha(y), \alpha(a)) \rho(x, b)=\rho(\alpha(a), \alpha(x)) \rho(y, b)+\rho(\alpha(x), \alpha(y)) \rho(a, b), \tag{2.4}
\end{align*}
$$

for any $x, y, a, b \in L$. Furthermore, if $\beta: V \rightarrow V$ is a vector space automorphism of V, then $(V ; \rho, \beta)$ is called a regular representation of $(L,[\cdot, \cdot, \cdot], \alpha)$.

It follows from the above definition that any 3-Hom-Lie algebra ($L,[\cdot, \cdot, \cdot], \alpha$) can be regarded as a representation of itself, where $\rho=\operatorname{ad}: \wedge^{2} L \rightarrow \operatorname{End}(L)$ is given by $\operatorname{ad}(x, y)(z):=[x, y, z]$, for $x, y, z \in L$. This is called the adjoint representation.

Definition 2.4 ([13]) A 3-Hom-Leibniz algebra is a triple $\left(\mathcal{L},[\cdot, \cdot, \cdot]_{\mathcal{L}}, \alpha_{\mathcal{L}}\right)$ consisting of a vector space \mathcal{L}, a trilinear mapping $[\cdot, \cdot, \cdot]_{\mathcal{L}}: \mathcal{L} \times \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$, and a linear map $\alpha_{\mathcal{L}}: \mathcal{L} \rightarrow \mathcal{L}$ satisfying $\alpha_{\mathcal{L}}\left([x, y, z]_{\mathcal{L}}\right)=\left[\alpha_{\mathcal{L}}(x), \alpha_{\mathcal{L}}(y), \alpha_{\mathcal{L}}(z)\right]_{\mathcal{L}}$ such that

$$
\begin{align*}
& {\left[\alpha_{\mathcal{L}}(a), \alpha_{\mathcal{L}}(b),[x, y, z]_{\mathcal{L}}\right]_{\mathcal{L}}} \\
& \quad=\left[[a, b, x]_{\mathcal{L}}, \alpha_{\mathcal{L}}(y), \alpha_{\mathcal{L}}(z)\right]_{\mathcal{L}}+\left[\alpha_{\mathcal{L}}(x),[a, b, y]_{\mathcal{L}}, \alpha_{\mathcal{L}}(z)\right]_{\mathcal{L}}+\left[\alpha_{\mathcal{L}}(x), \alpha_{\mathcal{L}}(y),[a, b, z]_{\mathcal{L}}\right]_{\mathcal{L}}, \tag{2.5}
\end{align*}
$$

for any $a, b, x, y, z \in L$.
Proposition 2.5 Let $(L,[\cdot, \cdot, \cdot], \alpha)$ be a 3-Hom-Lie algebra, V be a vector space, $\beta \in \operatorname{End}(V)$ and $\rho: \wedge^{2} L \rightarrow \operatorname{End}(V)$ be a skew-symmetric linear map. Then $(V ; \rho, \beta)$ is a representation of 3-Hom-Lie algebra L if and only if $L \oplus V$ is a 3-Hom-Leibniz algebra under the following maps:

$$
\begin{aligned}
& (\alpha \oplus \beta)(x+u):=\alpha(x)+\beta(u) \\
& {[x+u, y+v, z+w]_{\rho}:=[x, y, z]+\rho(x, y) w}
\end{aligned}
$$

for any $x, y, z \in L$ and $u, v, w \in V .\left(L \oplus V,[\cdot, \cdot, \cdot]_{\rho}, \alpha \oplus \beta\right)$ is called the hemisemidirect product 3-Hom-Leibniz algebra, and denoted by $L \ltimes_{\rho} V$.

Proof For all $x, y, z, a, b \in L, u, v, w, s, t \in V$, by Eqs. (2.1)-(2.3), we have

$$
\begin{aligned}
& (\alpha \oplus \beta)\left([x+u, y+v, z+w]_{\rho}\right)=(\alpha \oplus \beta)([x, y, z]+\rho(x, y) w) \\
& \quad=\alpha([x, y, z])+\beta(\rho(x, y) w)=[\alpha(x), \alpha(y), \alpha(z)]+\rho(\alpha(x), \alpha(y)) \beta(w) \\
& \quad=[\alpha(x)+\beta(u), \alpha(y)+\beta(v), \alpha(z)+\beta(w)]_{\rho} \\
& \quad=[(\alpha \oplus \beta)(x+u),(\alpha \oplus \beta)(y+v),(\alpha \oplus \beta)(z+w)]_{\rho}, \\
& {\left[[a+s, b+t, x+u]_{\rho},(\alpha \oplus \beta)(y+v),(\alpha \oplus \beta)(z+w)\right]_{\rho}+} \\
& {\left[(\alpha \oplus \beta)(x+u),[a+s, b+t, y+v]_{\rho},(\alpha \oplus \beta)(z+w)\right]_{\rho}+} \\
& {\left[(\alpha \oplus \beta)(x+u),(\alpha \oplus \beta)(y+v),[a+s, b+t, z+w]_{\rho}\right]_{\rho}-}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[(\alpha \oplus \beta)(a+s),(\alpha \oplus \beta)(b+t),[x+u, y+v, z+w]_{\rho}\right]_{\rho} } \\
&= {[[a, b, x]+\rho(a, b) u, \alpha(y)+\beta(v), \alpha(z)+\beta(w)]_{\rho}+} \\
& {[\alpha(x)+\beta(u),[a, b, y]+\rho(a, b) v, \alpha(z)+\beta(w)]_{\rho}+} \\
& {[\alpha(x)+\beta(u), \alpha(y)+\beta(v),[a, b, z]+\rho(a, b) w]_{\rho}-} \\
& {[\alpha(a)+\beta(s), \alpha(b)+\beta(t),[x, y, z]+\rho(x, y) w]_{\rho} } \\
&= {[[a, b, x], \alpha(y), \alpha(z)]+\rho([a, b, x], \alpha(y)) \beta(w)+[\alpha(x),[a, b, y], \alpha(z)]+} \\
& \rho(\alpha(x),[a, b, y]) \beta(w)+[\alpha(x), \alpha(y),[a, b, z]]+\rho(\alpha(x), \alpha(y)) \rho(a, b) w- \\
& {[\alpha(a), \alpha(b),[x, y, z]]-\rho(\alpha(a), \alpha(b)) \rho(x, y) w=0 . }
\end{aligned}
$$

Thus, $\left(L \oplus V,[\cdot, \cdot, \cdot]_{\rho}, \alpha \oplus \beta\right)$ is a 3-Hom-Leibniz algebra.
Definition 2.6 Let $(V ; \rho, \beta)$ be a representation of the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$. Then the linear map $T: V \rightarrow L$ is called an embedding tensor on the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $(V ; \rho, \beta)$ if T meets the following equations:

$$
\begin{align*}
& T \circ \beta=\alpha \circ T, \tag{2.6}\\
& {[T u, T v, T w]=T(\rho(T u, T v) w),} \tag{2.7}
\end{align*}
$$

for any $u, v, w \in V$.
Theorem 2.7 A linear map $T: V \rightarrow L$ is an embedding tensor on the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $(V ; \rho, \beta)$ if and only if the graph $\operatorname{Gr}(T)=\{T u+$ $u \mid u \in V\}$ is a 3-Hom-Leibniz subalgebra of the hemisemidirect product 3-Hom-Leibniz algebra $L \ltimes_{\rho} V$.

Proof Let $T: V \rightarrow L$ be a linear map. Then for all $u, v, w \in V$, we have

$$
\begin{aligned}
& (\alpha \oplus \beta)(T u+u)=\alpha(T u)+\beta(u), \\
& {[T u+u, T v+v, T w+w]_{\rho}=[T u, T v, T w]+\rho(T u, T v) w .}
\end{aligned}
$$

Thus, the graph

$$
G r(T)=\{T u+u \mid u \in V\}
$$

is a subalgebra of the hemisemidirect product 3-Hom-Leibniz algebra $L \ltimes_{\rho} V$ if and only if T meets Eqs. (2.6) and (2.7), which implies that T is an embedding tensor on the 3-Hom-Lie algebra L with respect to the representation $(V ; \rho, \beta)$.

Clearly, the algebraic structure underlying an embedding tensor on the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ is a 3-Hom-Leibniz algebra. Thereby, we have the following proposition.

Proposition 2.8 Let $T: V \rightarrow L$ be an embedding tensor on the 3-Hom-Lie algebra ($L,[\cdot, \cdot, \cdot], \alpha$) with respect to the representation $(V ; \rho, \beta)$. If a linear map $[\cdot, \cdot, \cdot]_{T}: V \times V \times V \rightarrow V$ is given by

$$
\begin{equation*}
[u, v, w]_{T}=\rho(T u, T v) w \tag{2.8}
\end{equation*}
$$

for any $u, v, w \in V$, then $\left(V,[\cdot, \cdot, \cdot]_{T}, \beta\right)$ is a 3-Hom-Leibniz algebra. Moreover, T is a homomor-
phism from the 3-Hom-Leibniz algebra $\left(V,[\cdot, \cdot, \cdot]_{T}, \beta\right)$ to the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$.
Proof For all $u, v, w, s, t \in V$, by Eqs. (2.2), (2.3), (2.6)-(2.8), we have

$$
\begin{aligned}
& \beta\left([u, v, w]_{T}\right)=\beta(\rho(T u, T v) w) \\
& \quad=\rho(\alpha(T u), \alpha(T v)) \beta(w)=\rho(T \beta(u), T \beta(v)) \beta(w) \\
& \quad=[\beta(u), \beta(v), \beta(w)]_{T}, \\
& \quad=[\rho(T s, T t) u, \beta(v), \beta(w)]_{T}+[\beta(u), \rho(T s, T t) v, \beta(w)]_{T}+[\beta(u), \beta(v), \rho(T s, T t) w]_{T} \\
& \quad=\rho(T \rho(T s, T t) u, T \beta(v)) \beta(w)+\rho(T \beta(u), T \rho(T s, T t) v) \beta(w)+\rho(T \beta(u), T \beta(v)) \rho(T s, T t) w \\
& \quad=\rho([T s, T t, T u], \alpha(T v)) \beta(w)+\rho(\alpha(T u),[T s, T t, T v]) \beta(w)+\rho(\alpha(T u), \alpha(T v)) \rho(T s, T t) w \\
& \quad=\rho(\alpha(T s), \alpha(T t)) \rho(T u, T v) w=\rho(T \beta(s), T \beta(t)) \rho(T u, T v) w \\
& \quad=[\beta(s), \beta(t), \rho(T u, T v) w]_{T}=\left[\beta(s), \beta(t),[u, v, w]_{T}\right]_{T} .
\end{aligned}
$$

Thus, $\left(V,[\cdot, \cdot, \cdot]_{T}, \beta\right)$ is a 3 -Hom-Leibniz algebra. By Eqs. (2.6) and (2.7), T is a homomorphism from the 3 -Hom-Leibniz algebra $\left(V,[\cdot, \cdot, \cdot]_{T}, \beta\right)$ to the 3 -Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$.

Definition 2.9 Let T and T^{\prime} be two embedding tensors on the 3-Hom-Lie algebra ($L,[\cdot, \cdot, \cdot], \alpha$) with respect to the representation $(V ; \rho, \beta)$. Then a homomorphism from T^{\prime} to T consists of a 3-Hom-Lie algebra homomorphism $\psi_{L}: L \rightarrow L$ and a linear map $\psi_{V}: V \rightarrow V$ such that

$$
\begin{align*}
& \beta \circ \psi_{V}=\psi_{V} \circ \beta \tag{2.9}\\
& T \circ \psi_{V}=\psi_{L} \circ T^{\prime} \tag{2.10}\\
& \psi_{V}(\rho(x, y) u)=\rho\left(\psi_{L}(x), \psi_{L}(y)\right) \psi_{V}(u) \tag{2.11}
\end{align*}
$$

In particular, if both ψ_{L} and ψ_{V} are invertible, $\left(\psi_{L}, \psi_{V}\right)$ is called an isomorphism from T^{\prime} to T.
The association of a 3-Hom-Leibniz algebra from an embedding tensor enjoys the functorial property.

Proposition 2.10 Let T and T^{\prime} be two embedding tensors on the 3-Hom-Lie algebra ($L,[\cdot, \cdot, \cdot], \alpha$) with respect to the representation $(V ; \rho, \beta)$, and $\left(\psi_{L}, \psi_{V}\right)$ be a homomorphism from T^{\prime} to T. Then ψ_{V} is a homomorphism of 3-Hom-Leibniz algebras from $\left(V,[\cdot, \cdot, \cdot]_{T^{\prime}}, \beta\right)$ to $\left(V,[\cdot, \cdot, \cdot]_{T}, \beta\right)$.

Proof For all $u, v, w \in V$, by Eqs. (2.8), (2.10) and (2.11), we have

$$
\begin{aligned}
& \psi_{V}\left([u, v, w]_{T^{\prime}}\right)=\psi_{V}\left(\rho\left(T^{\prime} u, T^{\prime} v\right) w\right) \\
& \quad=\rho\left(\psi_{L}\left(T^{\prime} u\right), \psi_{L}\left(T^{\prime} v\right)\right) \psi_{V}(w)=\rho\left(T \psi_{V}(u), T \psi_{V}(v)\right) \psi_{V}(w) \\
& \quad=\left[\psi_{V}(u), \psi_{V}(v), \psi_{V}(w)\right]_{T} .
\end{aligned}
$$

Using Eq. (2.9), we can get ψ_{V} is a homomorphism of 3-Hom-Leibniz algebras from ($V,[\cdot, \cdot, \cdot]_{T^{\prime}}, \beta$) to $\left(V,[\cdot, \cdot, \cdot]_{T}, \beta\right)$.

Next, we present some examples of embedding tensors on 3-Hom-Lie algebras.
Example 2.11 Let $(L,[\cdot, \cdot, \cdot], \alpha)$ be a 3-Hom-Lie algebra. Then the identity map Id: $L \rightarrow L$ is
an embedding tensor on the 3-Hom-Lie algebra L with respect to the adjoint representation.
Example 2.12 Let $(L,[\cdot, \cdot, \cdot], \alpha)$ be a 3-Hom-Lie algebra. Then a linear map $D: L \rightarrow L$ is said to be a derivation for the 3-Hom-Lie algebra L if $\alpha \circ D=D \circ \alpha$ and $D[x, y, z]=$ $[D x, y, z]+[x, D y, z]+[x, y, D z]$, for all $x, y, z \in L$. If $D^{2}=0$, then D is an embedding tensor on L with respect to the adjoint representation.

Example 2.13 Let $(V ; \rho, \beta)$ be a representation of a 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$. If a linear map $f: V \rightarrow L$ satisfies:

$$
\begin{aligned}
& \alpha(f(u))=f(\beta(u)) \\
& f(\rho(x, f(u)) v)=[x, f(u), f(v)]
\end{aligned}
$$

for any $x \in L, u, v \in V$, then f is an embedding tensors on the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $(V ; \rho, \beta)$.

Example 2.14 Let $(L,[\cdot, \cdot, \cdot], \alpha)$ be a 3 -Hom-Lie algebra. Then it can be easily checked that $\left(\oplus^{n} L ; \rho, \oplus^{n} \alpha\right)$ is a representation of the 3 -Hom-Lie algebra L, where

$$
\rho: \wedge^{2} L \rightarrow \operatorname{End}\left(\oplus^{n} L\right), \rho(x, y)\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left(\left[x, y, x_{1}\right], \ldots,\left[x, y, x_{n}\right]\right)
$$

for any $x \in L,\left(x_{1}, \ldots, x_{n}\right) \in \oplus^{n} L$. Moreover, $T: \oplus^{n} L \rightarrow L, T\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}$ is an embedding tensor on L with respect to the representation $\left(\oplus^{n} L ; \rho, \oplus^{n} \alpha\right)$.

Example 2.15 With the notations of the previous example, then the i-th projection map $T_{i}: \oplus^{n} L \rightarrow L, T_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ is an embedding tensor on $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $\left(\oplus^{n} L ; \rho, \oplus^{n} \alpha\right)$.

3. The cohomology of embedding tensors on 3-Hom-Lie algebras

In this section, we recall some basic results of representations and cohomologies of 3-HomLeibniz algebras. We construct a representation of the 3-Hom-Leibniz algebra ($V,[\cdot, \cdot, \cdot]_{T}, \beta$) on the vector space L, and define the cohomologies of an embedding tensor on 3-Hom-Lie algebras.

Definition 3.1 A representation of the 3-Hom-Leibniz algebra $\left(\mathcal{L},[\cdot, \cdot, \cdot]_{\mathcal{L}}, \alpha\right)$ is a pair $(V ; \beta)$ of vector space V and a linear map $\beta: V \rightarrow V$, equipped with 3 actions

$$
\begin{array}{r}
l: \mathcal{L} \otimes \mathcal{L} \otimes V \rightarrow V, \\
m: \mathcal{L} \otimes V \otimes \mathcal{L} \rightarrow V, \\
r: V \otimes \mathcal{L} \otimes \mathcal{L} \rightarrow V,
\end{array}
$$

satisfying for any $x, y, z, a, b \in \mathcal{L}$ and $u \in V$

$$
\begin{aligned}
l(\alpha(x), \alpha(y), \beta(u)) & =\beta(l(x, y, u)) \\
m(\alpha(x), \beta(u), \alpha(z)) & =\beta(m(x, u, z)) \\
r(\beta(u), \alpha(y), \alpha(z)) & =\beta(r(u, y, z))
\end{aligned}
$$

and

$$
\begin{align*}
& l\left([a, b, x]_{\mathcal{L}}, \alpha(y), \beta(u)\right)+l\left(\alpha(x),[a, b, y]_{\mathcal{L}}, \beta(u)\right)+l(\alpha(x), \alpha(y), l(a, b, u)) \\
& \quad=l(\alpha(a), \alpha(b), l(x, y, u)) \tag{3.1}\\
& m\left([a, b, x]_{\mathcal{L}}, \beta(u), \alpha(z)\right)+m(\alpha(x), l(a, b, u), \alpha(z))+m\left(\alpha(x), \beta(u),[a, b, z]_{\mathcal{L}}\right) \\
& \quad=l(\alpha(a), \alpha(b), m(x, u, z)) \tag{3.2}\\
& r(l(a, b, u), \alpha(y), \alpha(z))+r\left(\beta(u),[a, b, y]_{\mathcal{L}}, \alpha(z)\right)+r\left(\beta(u), \alpha(y),[a, b, z]_{\mathcal{L}}\right) \\
& \quad=l(\alpha(a), \alpha(b), r(u, y, z)), \tag{3.3}\\
& r(m(a, u, x), \alpha(y), \alpha(z))+m(\alpha(x), m(a, u, y), \alpha(z))+l(\alpha(x), \alpha(y), m(a, u, z)) \\
& \quad=m\left(\alpha(a), \beta(u),[x, y, z]_{\mathcal{L}}\right) \tag{3.4}\\
& r(r(u, b, x), \alpha(y), \alpha(z))+m(\alpha(x), r(u, b, y), \alpha(z))+l(\alpha(x), \alpha(y), r(u, b, z)) \\
& \quad=r\left(\beta(u), \alpha(b),[x, y, z]_{\mathcal{L}}\right) . \tag{3.5}
\end{align*}
$$

An n-cochain on a 3 -Hom-Leibniz algebra $\left(\mathcal{L},[\cdot, \cdot, \cdot]_{\mathcal{L}}, \alpha\right)$ with coefficients in a representation $(V ; l, m, r, \beta)$ is a linear map

$$
f: \overbrace{\wedge^{2} \mathcal{L} \otimes \cdots \otimes \wedge^{2} \mathcal{L}}^{n-1} \otimes \mathcal{L} \rightarrow V, \quad n \geq 1
$$

such that $\beta \circ f=f \circ\left(\tilde{\alpha}^{\otimes n-1} \otimes \alpha\right)$. The space generated by n-cochains is denoted as $\mathcal{C}_{3 \mathrm{HLei}}^{n}(\mathcal{L}, V)$. The coboundary map δ from n-cochains to ($n+1$)-cochains, for $X_{i}=x_{i} \wedge y_{i} \in \wedge^{2} \mathcal{L}, 1 \leq i \leq n$ and $z \in \mathcal{L}$, is defined as

$$
\begin{aligned}
&(\delta f)\left(X_{1}, X_{2}, \ldots, X_{n}, z\right) \\
&= \sum_{1 \leq j<k \leq n}(-1)^{j} f\left(\tilde{\alpha}\left(X_{1}\right), \ldots, \widehat{X_{j}}, \ldots, \tilde{\alpha}\left(X_{k-1}\right), \alpha\left(x_{k}\right) \wedge\left[x_{j}, y_{j}, y_{k}\right]_{\mathcal{L}}+\right. \\
&\left.\quad\left[x_{j}, y_{j}, x_{k}\right]_{\mathcal{L}} \wedge \alpha\left(y_{k}\right), \ldots, \tilde{\alpha}\left(X_{n}\right), \alpha(z)\right)+ \\
& \sum_{j=1}^{n}(-1)^{j} f\left(\tilde{\alpha}\left(X_{1}\right), \ldots, \widehat{X_{j}}, \ldots, \tilde{\alpha}\left(X_{n}\right),\left[x_{j}, y_{j}, z\right]_{\mathcal{L}}\right)+ \\
& \sum_{j=1}^{n}(-1)^{j+1} l\left(\tilde{\alpha}^{n-1}\left(X_{j}\right), f\left(X_{1}, \ldots, \widehat{X_{j}}, \ldots, X_{n}, z\right)\right)+ \\
& \quad(-1)^{n+1}\left(m\left(\alpha^{n-1}\left(x_{n}\right), f\left(X_{1}, \ldots, X_{n-1}, y_{n}\right), \alpha^{n-1}(z)\right)+\right. \\
&\left.\quad r\left(f\left(X_{1}, \ldots, X_{n-1}, x_{n}\right), \alpha^{n-1}\left(y_{n}\right), \alpha^{n-1}(z)\right)\right) .
\end{aligned}
$$

It was proved in [13] that $\delta^{2}=0$. Thus, $\left(\oplus_{n=1}^{+\infty} \mathcal{C}_{3 \text { HLei }}^{n}(\mathcal{L}, V), \delta\right)$ is a cochain complex. We denote the set of n-cocycles by $\mathcal{Z}_{3 \text { HLei }}^{n}(\mathcal{L}, V)$, the set of n-coboundaries by $\mathcal{B}_{3 H L e i}^{n}(\mathcal{L}, V)$ and the n-th cohomology group by $\mathcal{H}_{3 \mathrm{HLei}}^{n}(\mathcal{L}, V)=\mathcal{Z}_{3 \mathrm{HLei}}^{n}(\mathcal{L}, V) / \mathcal{B}_{3 \mathrm{HLei}}^{n}(\mathcal{L}, V)$.

Lemma 3.2 Let $T: V \rightarrow L$ be an embedding tensor on the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $(V ; \rho, \beta)$. Define actions

$$
l_{T}: V \otimes V \otimes L \rightarrow L, m_{T}: V \otimes L \otimes V \rightarrow L, r_{T}: L \otimes V \otimes V \rightarrow L
$$

by

$$
\begin{aligned}
& l_{T}(u, v, x)=[T u, T v, x], \\
& m_{T}(u, x, v)=[T u, x, T v]-T \rho(T u, x) v, \\
& r_{T}(x, u, v)=[x, T u, T v]-T \rho(x, T u) v,
\end{aligned}
$$

for any $u, v \in V, x \in L$. Then $\left(L ; l_{T}, m_{T}, r_{T}, \alpha\right)$ is a representation of the 3-Hom-Leibniz algebra $\left(V,[\cdot, \cdot, \cdot]_{T}, \beta\right)$.

Proof For all $u, v, w, s, t \in V$ and $x \in L$, by Eqs. (2.2) and (2.6), we have

$$
\begin{aligned}
& l_{T}(\beta(u), \beta(v), \alpha(x))=[T \beta(u), T \beta(v), \alpha(x)]=[\alpha(T u), \alpha(T v), \alpha(x)] \\
& \quad=\alpha([T u, T v, x])=\alpha\left(l_{T}(u, v, x)\right) \\
& m_{T}(\beta(u), \alpha(x), \beta(v))=[T \beta(u), \alpha(x), T \beta(v)]-T(\rho(T \beta(u), \alpha(x)) \beta(v)) \\
& \quad=[\alpha(T u), \alpha(x), \alpha(T v)]-T(\rho(\alpha(T u), \alpha(x)) \beta(v)) \\
& \quad=\alpha([T u, x, T v])-T \beta(\rho(T u, x) v)=\alpha([T u, x, T v])-\alpha(T \rho(T u, x) v) \\
& \quad=\alpha\left(m_{T}(u, x, v)\right) \text {. }
\end{aligned}
$$

Similarly, we can show that $r_{T}(\alpha(x), \beta(u), \beta(v))=\alpha\left(r_{T}(x, u, v)\right)$ holds.
By Eqs. (2.1), (2.7) and (2.8), we have

$$
\begin{aligned}
l_{T} & \left([u, v, s]_{T}, \beta(t), \alpha(x)\right)+l_{T}\left(\beta(s),[u, v, t]_{T}, \alpha(x)\right)+l_{T}\left(\beta(s), \beta(t), l_{T}(u, v, x)\right) \\
& =\left[T[u, v, s]_{T}, T \beta(t), \alpha(x)\right]+\left[T \beta(s), T[u, v, t]_{T}, \alpha(x)\right]+[T \beta(s), T \beta(t),[T u, T v, x]] \\
& =[[T u, T v, T s], \alpha(T t), \alpha(x)]+[\alpha(T s),[T u, T v, T t], \alpha(x)]+[\alpha(T s), \alpha(T t),[T u, T v, x]] \\
& =[\alpha(T u), \alpha(T v),[T s, T t, x]]=[T \beta(u), T \beta(v),[T s, T t, x]]=l_{T}\left(\beta(u), \beta(v), l_{T}(s, t, x)\right),
\end{aligned}
$$

which indicates that Eq. (3.1) holds.
By Eqs. (2.1), (2.3), (2.6)-(2.8), we have

$$
\begin{aligned}
& m_{T}({\left.[u, v, s]_{T}, \alpha(x), \beta(t)\right)+m_{T}\left(\beta(s), l_{T}(u, v, x), \beta(t)\right)+m_{T}\left(\beta(s), \alpha(x),[u, v, t]_{T}\right) } \\
&= {\left[T[u, v, s]_{T}, \alpha(x), T \beta(t)\right]-T \rho\left(T[u, v, s]_{T}, \alpha(x)\right) \beta(t)+[T \beta(s),[T u, T v, x], T \beta(t)]-} \\
& T \rho(T \beta(s),[T u, T v, x]) \beta(t)+\left[T \beta(s), \alpha(x), T[u, v, t]_{T}\right]-T \rho(T \beta(s), \alpha(x))[u, v, t]_{T} \\
&= {[[T u, T v, T s], \alpha(x), \alpha(T t)]-T \rho([T u, T v, T s], \alpha(x)) \beta(t)+[\alpha(T s),[T u, T v, x], \alpha(T t)]-} \\
& T \rho(\alpha(T s),[T u, T v, x]) \beta(t)+[\alpha(T s), \alpha(x),[T u, T v, T t]]-T \rho(\alpha(T s), \alpha(x)) \rho(T u, T v) t \\
&= {[\alpha(T u), \alpha(T v),[T s, x, T t]]-T \rho(\alpha(T u), \alpha(T v)) \rho(T s, x) t } \\
&= {[\alpha(T u), \alpha(T v),[T s, x, T t]]-[\alpha(T u), \alpha(T v), \rho(T s, x) t] } \\
&= {[T \beta(u), T \beta(v),[T s, x, T t]-\rho(T s, x) t]=l_{T}\left(u, v, m_{T}(s, x, t)\right), } \\
& r_{T}\left(l_{T}(u, v, x), \beta(s), \beta(t)\right)+r_{T}\left(\alpha(x),[u, v, s]_{T}, \beta(t)\right)+r_{T}\left(\alpha(x), \beta(s),[u, v, t]_{T}\right) \\
&= {[[T u, T v, x], T \beta(s), T \beta(t)]-T \rho([T u, T v, x], T \beta(s)) \beta(t)+[\alpha(x), T \rho(T u, T v) s, T \beta(t)]-} \\
& T \rho(\alpha(x), T \rho(T u, T v) s) \beta(t)+[\alpha(x), T \beta(s), T \rho(T u, T v) t]-T \rho(\alpha(x), T \beta(s)) \rho(T u, T v) t \\
&= {[[T u, T v, x], \alpha(T s), \alpha(T t)]-T \rho([T u, T v, x], \alpha(T s)) \beta(t)+[\alpha(x),[T u, T v, T s], \alpha(T t)]-}
\end{aligned}
$$

$$
\begin{aligned}
& T \rho(\alpha(x),[T u, T v, T s]) \beta(t)+[\alpha(x), \alpha(T s),[T u, T v, T t]]-T \rho(\alpha(x), \alpha(T s)) \rho(T u, T v) t \\
= & {[\alpha(T u), \alpha(T v),[x, T s, T t]]-T \rho(\alpha(T u), \alpha(T v)) \rho(x, T s) t } \\
= & {[\alpha(T u), \alpha(T v),[x, T s, T t]]-[\alpha(T u), \alpha(T v), T \rho(x, T s) t] } \\
= & {[T \beta(u), T \beta(v),[x, T s, T t]-T \rho(x, T s) t]=l_{T}\left(\beta(u), \beta(v), r_{T}(x, s, t)\right), }
\end{aligned}
$$

which imply that Eqs. (3.2) and (3.3) hold. Similarly, we can prove that Eqs. (3.4) and (3.5) are true. Thus, $\left(L ; l_{T}, m_{T}, r_{T}, \alpha\right)$ is a representation of the 3 -Hom-Leibniz algebra $\left(V,[\cdot, \cdot, \cdot]_{T}, \beta\right)$.

When $n \geq 1$, let $\delta_{T}: \mathcal{C}_{3 \text { HLei }}^{n}(V, L) \rightarrow \mathcal{C}_{3 \text { HLei }}^{n+1}(V, L)$ be the coboundary operator of the 3 -HomLeibniz algebra $\left(V,[\cdot, \cdot, \cdot]_{T}, \beta\right)$ with coefficients in the representation ($L ; l_{T}, m_{T}, r_{T}, \alpha$). More precisely, for all $f \in \mathcal{C}_{3 \text { HLei }}^{n}(V, L), V_{i}=u_{i} \wedge v_{i} \in \wedge^{2} V, 1 \leq i \leq n$ and $w \in V$, we have

$$
\begin{aligned}
& \left(\delta_{T} f\right)\left(V_{1}, V_{2}, \ldots, V_{n}, w\right) \\
& =\sum_{1 \leq j<k \leq n}(-1)^{j} f\left(\tilde{\beta}\left(V_{1}\right), \ldots, \widehat{V_{j}}, \ldots, \tilde{\beta}\left(V_{k-1}\right), \beta\left(u_{k}\right) \wedge\right. \\
& \left.\quad\left[u_{j}, v_{j}, v_{k}\right]_{T}+\left[u_{j}, v_{j}, u_{k}\right]_{T} \wedge \beta\left(v_{k}\right), \ldots, \tilde{\beta}\left(V_{n}\right), \beta(w)\right)+ \\
& \quad \sum_{j=1}^{n}(-1)^{j} f\left(\tilde{\beta}\left(V_{1}\right), \ldots, \widehat{V_{j}}, \ldots, \tilde{\beta}\left(V_{n}\right),\left[u_{j}, v_{j}, w\right]_{T}\right)+ \\
& \quad \sum_{j=1}^{n}(-1)^{j+1} l_{T}\left(\tilde{\beta}^{n-1}\left(V_{j}\right), f\left(V_{1}, \ldots, \widehat{V_{j}}, \ldots, V_{n}, w\right)\right)+ \\
& \quad(-1)^{n+1}\left(m_{T}\left(\beta^{n-1}\left(u_{n}\right), f\left(V_{1}, \ldots, V_{n-1}, v_{n}\right), \beta^{n-1}(w)\right)+\right. \\
& \left.\quad r_{T}\left(f\left(V_{1}, \ldots, V_{n-1}, u_{n}\right), \beta^{n-1}\left(v_{n}\right), \beta^{n-1}(w)\right)\right) .
\end{aligned}
$$

In particular, for $f \in \mathcal{C}_{3 \mathrm{HLei}}^{1}(V, L):=\{g \in \operatorname{Hom}(V, L) \mid \alpha \circ g=g \circ \beta\}$ and $u, v, w \in V$, we have

$$
\begin{aligned}
& \left(\delta_{T} f\right)(u, v, w)=-f\left([u, v, w]_{T}\right)+l_{T}(u, v, f(w))+m_{T}(u, f(v), w)+r_{T}(f(u), v, w) \\
& \quad=-f(\rho(T u, T v) w)+[T u, T v, f(w)]+[T u, f(v), T w]-T \rho(T u, f(v)) w+ \\
& \quad[f(u), T v, T w]-T \rho(f(u), T v) w .
\end{aligned}
$$

When $n=0$, for any $(a, b) \in \mathcal{C}_{3 \mathrm{HLei}}^{0}(V, L):=\left\{(x, y) \in \wedge^{2} L \mid \alpha(x)=x, \alpha(y)=y\right\}$, we define

$$
\delta_{T}: \mathcal{C}_{3 \mathrm{HLei}}^{0}(V, L) \rightarrow \mathcal{C}_{3 \mathrm{HLei}}^{1}(V, L),(a, b) \mapsto \wp(a, b)
$$

by

$$
\wp(a, b) v=T \rho(a, b) \beta^{-1}(v)-\left[a, b, T \beta^{-1}(v)\right], \quad \forall v \in V,
$$

where $\beta: V \rightarrow V$ is a vector space isomorphism.
Proposition 3.3 Let $T: V \rightarrow L$ be an embedding tensor on the regular 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the regular representation $(V ; \rho, \beta)$. Then $\delta_{T}(\wp(a, b))=0$, that is the composition $\mathcal{C}_{3 \mathrm{HLei}}^{0}(V, L) \xrightarrow{\delta_{T}} \mathcal{C}_{3 \mathrm{HLei}}^{1}(V, L) \xrightarrow{\delta_{T}} \mathcal{C}_{3 \mathrm{HLei}}^{2}(V, L)$ is the zero map.

Proof For any $u, v, w \in V$, by Eqs. (2.1)-(2.3), (2.6) and (2.7) we have

$$
\left(\delta_{T} \wp(a, b)\right)(u, v, w)
$$

$$
\begin{aligned}
= & -\wp(a, b) \rho(T u, T v) w+[T u, T v, \wp(a, b) w]+[T u, \wp(a, b) v, T w]-T \rho(T u, \wp(a, b) v) w+ \\
& {[\wp(a, b) u, T v, T w]-T \rho(\wp(a, b) u, T v) w } \\
= & -T \rho(a, b) \rho\left(\alpha^{-1}(T u), \alpha^{-1}(T v)\right) \beta^{-1}(w)+\left[a, b, T \rho\left(\alpha^{-1}(T u), \alpha^{-1}(T v)\right) \beta^{-1}(w)\right]+ \\
& {\left[T u, T v, T \rho(a, b) \beta^{-1}(w)\right]-\left[T u, T v,\left[a, b, T \beta^{-1}(w)\right]\right]+\left[T u, T \rho(a, b) \beta^{-1}(v), T w\right]-} \\
& {\left[T u,\left[a, b, T \beta^{-1}(v)\right], T w\right]-T \rho\left(T u, T \rho(a, b) \beta^{-1}(v)\right) w+T \rho\left(T u,\left[a, b, T \beta^{-1}(v)\right]\right) w+} \\
& {\left[T \rho(a, b) \beta^{-1}(u), T v, T w\right]-\left[\left[a, b, T \beta^{-1}(u)\right], T v, T w\right]-T \rho\left(T \rho(a, b) \beta^{-1}(u), T v\right) w+} \\
& T \rho\left(\left[a, b, T \beta^{-1}(u)\right], T v\right) w \\
= & -T \rho(a, b) \rho\left(\alpha^{-1}(T u), \alpha^{-1}(T v)\right) \beta^{-1}(w)+\left[a, b,\left[T \beta^{-1}(u), T \beta^{-1}(v), T \beta^{-1}(w)\right]\right]+ \\
& T \rho(T u, T v) \rho(a, b) \beta^{-1}(w)-\left[T u, T v,\left[a, b, T \beta^{-1}(w)\right]\right]+T \rho\left(T u, T \rho(a, b) \beta^{-1}(v)\right) w- \\
& {\left[T u,\left[a, b, T \beta^{-1}(v)\right], T w\right]-T \rho\left(T u, T \rho(a, b) \beta^{-1}(v)\right) w+T \rho\left(T u,\left[a, b, T \beta^{-1}(v)\right]\right) w+} \\
& T \rho\left(T \rho(a, b) \beta^{-1}(u), T v\right) w-\left[\left[a, b, T \beta^{-1}(u)\right], T v, T w\right]-T \rho\left(T \rho(a, b) \beta^{-1}(u), T v\right) w+ \\
& T \rho\left(\left[a, b, T \beta^{-1}(u)\right], T v\right) w=0 .
\end{aligned}
$$

Therefore, $\delta_{T}(\wp(a, b))=0$.
Next we define the cohomology theory of an embedding tensor T on the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $(V ; \rho, \beta)$. For $n \geq 0$, define the set of n-cochains of T by $\mathcal{C}_{T}^{n}(V, L):=\mathcal{C}_{3 \mathrm{HLei}}^{n}(V, L)$. Then $\left(\oplus_{n=0}^{\infty} \mathcal{C}_{T}^{n}(V, L), \delta_{T}\right)$ is a cochain complex. For $n \geq 1$, we denote the set of n-cocycles by $\mathcal{Z}_{T}^{n}(V, L)$, the set of n-coboundaries by $\mathcal{B}_{T}^{n}(V, L)$ and the n-th cohomology group of the embedding tensor T by $\mathcal{H}_{T}^{n}(V, L)=\mathcal{Z}_{T}^{n}(V, L) / \mathcal{B}_{T}^{n}(V, L)$.

4. Deformations of embedding tensors on 3-Hom-Lie algebras

In this section, we discuss linear deformations of embedding tensors on 3-Hom-Lie algebras. we show that if two linear deformations of an embedding tensor on a 3-Hom Lie algebra are equivalent, then their infinitesimals belong to the same cohomology class in the first cohomology group.

Definition 4.1 Let $T: V \rightarrow L$ be an embedding tensor on the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $(V ; \rho, \beta)$, and let $\mathfrak{I}: V \rightarrow L$ be a linear map. If $T_{t}=T+t \mathfrak{I}$ is an embedding tensor on $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $(V ; \rho, \beta)$ for all t, we say that \mathfrak{I} generates a linear deformation of the embedding tensor T.

Suppose that \mathfrak{I} generates a linear deformation of the embedding tensor T, then we have

$$
\begin{aligned}
& T_{t} \circ \beta=\alpha \circ T_{t} \\
& {\left[T_{t} u, T_{t} v, T_{t} w\right]=T_{t} \rho\left(T_{t} u, T_{t} v\right) w,}
\end{aligned}
$$

for all $u, v, w \in V$. This is equivalent to the following conditions

$$
\begin{align*}
& \mathfrak{I} \circ \beta=\alpha \circ \mathfrak{I}, \tag{4.1}\\
& {[T u, T v, \mathfrak{J} w]+[T u, \mathfrak{I} v, T w]+[\mathfrak{I} u, T v, T w]=\Im \rho(T u, T v) w+T \rho(T u, \mathfrak{I} v) w+T \rho(\Im u, T v) w,} \tag{4.2}
\end{align*}
$$

$$
\begin{align*}
& {[T u, \Im v, \Im w]+[\Im u, T v, \Im w]+[\mathfrak{J} u, \Im v, T w]=\Im \Im \rho(T u, \Im v) w+\Im \rho(\Im u, T v) w+T \rho(\Im u, \Im v) w,} \tag{4.3}\\
& {[\Im u, \Im v, \Im w]=\Im \Omega \rho(\Im u, \Im v) w,} \tag{4.4}
\end{align*}
$$

for all $u, v, w \in V$. Thus, T_{t} is a linear deformation of T if and only if Eqs. (4.1)-(4.4) hold. From Eqs. (4.1) and (4.4) it follows that the map \mathfrak{I} is an embedding tensor on the 3-Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $(V ; \rho, \beta)$.

Proposition 4.2 Let $T_{t}=T+t \mathfrak{I}$ be a linear deformation of an embedding tensor T on a 3 -Hom-Lie algebra $(L,[\cdot, \cdot, \cdot], \alpha)$ with respect to the representation $(V ; \rho, \beta)$. Then $\mathfrak{I} \in \mathcal{C}_{T}^{1}(V, L)$ is a 1-cocycle of the embedding tensor T. Moreover, the 1-cocycle \mathfrak{I} is called the infinitesimal of the linear deformation T_{t} of T.

Proof We observe that Eq. (4.2) implies that $\delta_{T} \mathfrak{I}=0$.
Next, we discuss equivalent linear deformations.
Definition 4.3 Let T be an embedding tensor on the regular 3-Hom-Lie algebra ($L,[\cdot, \cdot, \cdot], \alpha$) with respect to the regular representation $(V ; \rho, \beta)$. Two linear deformations $T_{t}^{1}=T+t \mathfrak{I}_{1}$ and $T_{t}^{2}=T+t \Im_{2}$ are said to be equivalent if there exist two elements $a, b \in L$ such that $\alpha(a)=a, \alpha(b)=b$ and the pair $\left(\operatorname{Id}_{L}+t \alpha^{-1}(\operatorname{ad}(a, b)), \operatorname{Id}_{V}+t \beta^{-1}(\rho(a, b))\right)$ is a homomorphism from T_{t}^{2} to T_{t}^{1}.

Let us recall from Definition 2.9 that the pair $\left(\operatorname{Id}_{L}+t \alpha^{-1}(\operatorname{ad}(a, b)), \operatorname{Id}_{V}+t \beta^{-1}(\rho(a, b))\right)$ is a homomorphism from T_{t}^{2} to T_{t}^{1} if the following conditions are true:
(1) The map $\operatorname{Id}_{L}+t \alpha^{-1}(\operatorname{ad}(a, b)): L \rightarrow L, x \mapsto x+t \alpha^{-1}(\operatorname{ad}(a, b) x)$ is a 3-Hom-Lie algebra homomorphism;
(2) $\left(T+t \mathfrak{I}_{1}\right)\left(u+t \beta^{-1}(\rho(a, b) u)\right)=\left(\operatorname{Id}_{L}+t \alpha^{-1}(\operatorname{ad}(a, b))\right)\left(T u+t \Im_{2} u\right)$;
(3) $\rho(x, y) u+t \beta^{-1}(\rho(a, b) \rho(x, y) u)=\rho\left(x+t \alpha^{-1}(\operatorname{ad}(a, b) x), y+\right.$

$$
\left.t \alpha^{-1}(\operatorname{ad}(a, b) y)\right)\left(u+t \beta^{-1}(\rho(a, b) u)\right), \forall x, y \in L, u \in V
$$

Theorem 4.4 Let T be an embedding tensor on a regular 3 -Hom-Lie algebra ($L,[\cdot, \cdot, \cdot \cdot], \alpha$) with respect to the regular representation $(V ; \rho, \beta)$. If two linear deformations $T_{t}^{1}=T+t \mathfrak{I}_{1}$ and $T_{t}^{2}=T+t \mathfrak{I}_{2}$ of T are equivalent, then \mathfrak{I}_{1} and \mathfrak{I}_{2} define the same cohomology class in $\mathcal{H}_{T}^{1}(V, L)$.

Proof Comparing coefficients of t^{1} on both sides of equation in condition (2), we have

$$
\begin{aligned}
\mathfrak{I}_{2} u-\Im_{1} u & =T \beta^{-1}(\rho(a, b) u)-\alpha^{-1}([a, b, T u]) \\
& =T \rho(a, b) \beta^{-1}(u)-\left[a, b, T \beta^{-1}(u)\right] \\
& =\wp(a, b) u \in \mathcal{B}_{T}^{1}(V, L),
\end{aligned}
$$

which implies that \mathfrak{I}_{2} and \mathfrak{I}_{1} belong to the same cohomology class in $\mathcal{H}_{T}^{1}(V, L)$.
Acknowledgements We thank the referees for their time and comments.

References

[1] H. NICOLAI, H. SAMTLEBEN. Maximal gauged supergravity in three dimensions. Phys. Rev. Lett., 2001, 86(9): 1686-1689.
[2] E. A. BERGSHOEFF, M. DEROO, O. HOHM. Multiple M2-branes and the embedding tensor. Classical Quantum Gravity, 2008, 25(14): 142001, 10 pp.
[3] M. AGUIAR. Pre-Poisson algebras. Lett. Math. Phys., 2000, 54(4): 263-277.
[4] A. DAS. Controlling structures, deformations and homotopy theory for averaging algebras. arXiv:2303.17798.
[5] Meiyan HU, Shuai HOU, Lina SONG, et al. Deformations and cohomologies of embedding tensors on 3-Lie algebras. arXiv:2302.08725.
[6] Yunhe SHENG, Rong TANG, Chenchang ZHU. The controlling L_{∞}-algebra, cohomology and homotopy of embedding tensors and Lie-Leibniz triples. Comm. Math. Phys., 2021, 386(1): 269-304.
[7] A. DAS, A. MAKHLOUF. Embedding tensors on Hom-Lie algebras. arXiv:2304.04178.
[8] J. T. HARTWIG, D. LARSSON, S. D. SILVESTROV. Deformations of Lie algebras using σ-derivations. J. Algebra, 2006, 295(2): 314-361.
[9] S. BENAYADI, A. MAKHLOUF. Hom-Lie algebras with symmetric invariant nondegenerate bilinear form. J. Geom. Phys., 2014, 76: 38-60.
[10] Yuanyuan CHEN, Zhongwei WANG, Liangyun ZHANG. Quasitriangular Hom-Lie bialgebras. J. Lie Theory, 2012, 22(4): 1075-1089.
[11] S. MABROUK, A. MAKHLOUF, S. MASSOUD. Generalized representations of 3-Hom-Lie algebras. Extracta Math., 2020, 35(1): 99-126.
[12] A. MAKHLOUF, S. SILVESTROV. Notes on 1-parameter formal deformations of Hom-associative and HomLie algebras. Forum Math., 2010, 22(4): 715-739.
[13] A. MAKHLOUF, A. NAOLEKAR. On n-Hom-Leibniz algebras and cohomology. Georgian Math. J., 2021, 28(5): 765-786.
[14] S. K. MISHRA, A. NAOLEKAR. O-operators on hom-Lie algebras. J. Math. Phys., 2020, 61(12): 121701.
[15] Lina SONG, Rong TANG. Cohomologies, deformations and extensions of n-Hom-Lie algebras. J. Geom. Phys., 2019, 141: 65-78.
[16] V. T. FILIPPOV. n-Lie algebras. Sibirsk. Mat. Zh., 1985, 26(6): 126-140.
[17] A. GUSTAVSSON. Algebraic structures on parallel M2-branes. Nuclear Phys. B, 2009, 811(1-2): 66-76.
[18] H. ATAGUEMA, A. MAKHLOUF, S. SILVESTROV. Generalization of n-ary Nambu algebras and beyond. J. Math. Phys., 2009, 50(8): 083501, 15pp.
[19] F. AMMAR, S. MABROUK, A. MAKHLOUF. Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras. J. Geom. Phys., 2011, 61(10): 1898-1913.
[20] Y. DALETSKII, L. TAKHTAJAN. Leibniz and Lie algebra structures for Nambu algebra. Lett. Math. Phys., 1997, 39(2): 127-141.

[^0]: Received May 3, 2023; Accepted August 14, 2023
 Supported by the Scientific Research Foundation for Science \& Technology Innovation Talent Team of the Intelligent Computing and Monitoring of Guizhou Province (Grant No. QJJ[2023]063), the Science and Technology Program of Guizhou Province (Grant Nos. ZK[2023]025; QKHZC[2023]372; ZK[2022]031), the National Natural Science Foundation of China (Grant No. 12161013), the Scientific Research Foundation of Guizhou University of Finance and Economics (Grant No. 2022KYYB08) and the Doctoral Research Start-Up Fund of Guiyang University (Grant No. GYU-KY-2024).

 * Corresponding author

 E-mail address: tengwen@mail.gufe.edu.cn (Wen TENG)

