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Abstract A subgroup H of a group G is said to be self-conjugate-permutable if HH
x = H

x

H

impliesHx = H for any x ofG. A finite group G is called an SC-group (PSC-group, respectively)

if all cyclic subgroups of G of order 2 or order 4 (prime order or order 4, respectively) are self-

conjugate-permutable in G. In this paper, we first investigate the structure of finite non-solvable

groups all of whose second maximal subgroups are SC-groups; then we mainly investigate the

structure of finite groups in which all of maximal subgroups of even order are PSC-groups.

In fact, we describe the structure of finite groups which are not PSC-groups but all of whose

maximal subgroups of even order are PSC-groups.
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1. Introduction

In this paper, only finite groups are considered and our notation is standard.

One of the important topics in group theory is to characterize the structure of groups, and

many classical results about this topic have been obtained, for example, minimal non-nilpotent

groups [1], minimal non-supersolvable groups [2], etc.

In 1991, Foguel [3] introduced conjugate permutable subgroup, i.e., a subgroup H of a group

G is said to be conjugate permutable if HHx = HxH for any x of G. And he showed that

conjugate permutable subgroups must be subnormal. Later, Shen et al. [4] introduced the dual

concept of conjugate permutable subgroup, self-conjugate-permutable subgroup. A subgroup H

of a group G is said to be self-conjugate-permutable if HHx = HxH implies Hx = H for any

x of G. It is obvious that maximal subgroups and Hall subgroups of a group G are examples

of self-conjugate-permutable subgroups. Shen et al. [4] called a group G a PSC-group if every

cyclic subgroup of prime order or order 4 is self-conjugate-permutable in G, and investigated

the structure of those groups which are not PSC-groups but all of whose proper subgroups are

PSC-groups. Shen et al. [5] characterized PSC-groups and proved that a group G is a solvable

T -group (A group G is called a T -group if normality is transitive in G) if and only if all prime

power order subgroups of G are self-conjugate-permutable in G.
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The aim of this paper is to investigate the structure of groups in which some subgroups are

self-conjugate-permutable. We call a group G an SC-group if all cyclic subgroups of G of order

2 or order 4 are self-conjugate-permutable in G. In Section 3, we investigate the structure of

groups all of whose maximal subgroups are SC-groups and determine the non-solvable groups

all of whose second maximal subgroups are SC-groups. In Section 4, we mainly investigate

the structure of finite groups in which all of maximal subgroups of even order are PSC-groups,

and describe the structure of finite groups which are not PSC-groups but all of whose maximal

subgroups of even order are PSC-groups.

2. Preliminary results

We collect some lemmas which will be frequently used in the sequel.

Lemma 2.1 ([4, Lemma 2.1]) Let G be a group. Suppose that H is self-conjugate-permutable

in G, K ≤ G and N � G. Then

(i) If H ≤ K, then H is self-conjugate-permutable in K;

(ii) Let N ≤ K. Then K/N is self-conjugate-permutable in G/N if and only if K is self-

conjugate-permutable in G.

Lemma 2.2 ([4, Lemma 2.2]) A subgroup H of G is normal if and only if H is subnormal as

well as self-conjugate-permutable in G.

Lemma 2.3 ([4, Lemma 2.3]) Let G be a group. Suppose that G = AB, A ≤ G, B ≤ G. If H is

self-conjugate-permutable in B and H is normalized by A, then H is self-conjugate-permutable

in G.

Lemma 2.4 ([4, Corollary 3.2]) If G is a PSC-group, then G is supersolvable.

Lemma 2.5 ( [5, Theorem 4.2]) If G is a minimal non-PSC-group, then G is solvable and

|π(G)| ≤ 2.

Lemma 2.6 ([5, Lemma 2.10]) Let G be a PSC-group. If X is a subgroup of G of order q,

where q is the largest prime divisor of |G|, then X is normal in G.

Lemma 2.7 Let G be a non-nilpotent dihedral group of order 2n or 4n, where n is odd. Then

G is an SC-group.

Proof Using similar arguments as the proof in [4, Lemma 2.8], the Lemma is true. 2

Lemma 2.8 ([6, Theorem 10.1.4]) If a group G has a fixed-point-free automorphism of order 2,

then G is abelian.

Lemma 2.9 ([7, Lemma 2.10]) Suppose that all cyclic subgroups of a group G of order p are

normal in G for a fixed prime p. If |Z(G)|p 6= 1, then all elements of order p of G are in Z(G).
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Lemma 2.10 ([8, III, Satz 5.2]) Let G be a minimal non-nilpotent group. Then

(i) G = P ⋊Q, where P ∈ Sylp(G), Q ∈ Sylq(G) with Q cyclic;

(ii) CP (Q) = P ′;

(iii) P/Φ(P ) is a minimal normal subgroup of G/Φ(P );

(iv) If P is abelian, then P is elementary abelian. If P is non-abelian, then

Z(P ) = P ′ = Φ(P );

(v) If p > 2, then the exponent of P is p. If p = 2, then the exponent of P is 2 or 4.

Lemma 2.11 ([9, Theorem B]) Let G be a non-solvable group. Suppose that every solvable

subgroup of G is either 2-nilpotent or minimal non-nilpotent. Then G is one of the following

groups:

(i) PSL(2, 2r), where 2r − 1 is a prime;

(ii) PSL(2, q), where q is a power of a prime with q ≡ 3 or 5 (mod 8);

(iii) SL(2, q), where q is a power of a prime with q ≡ 3 or 5 (mod 8).

3. Non-solvable groups all of whose second maximal subgroups are SC-

groups

In this section, we classify these groups all of whose maximal subgroups are SC-groups and

determine the non-solvable groups all of whose second maximal subgroups are SC-groups.

Theorem 3.1 If a group G is an SC-group, then G is 2-nilpotent.

Proof Let G be a counterexample of minimal order. It is clear that every maximal subgroup of

G satisfies the hypothesis of theorem. Hence, G is a minimal non-2-nilpotent group. By a result

in Itǒ [8, IV, Satz 5.4], G is minimal non-nilpotent. It follows from Lemma 2.10 that G = P ⋊Q,

where P ∈ Syl2(G) with exp(P ) ≤ 4.

Burnside Lemma implies that P is non-cyclic. Let x be an arbitrary non-trivial element of P .

Then we have that o(x) = 2 or o(x) = 4. So 〈x〉 is self-conjugate-permutable in G by hypothesis.

It follows from Lemma 2.2 that 〈x〉 is normal in G. Therefore, 〈x〉Q < G. By the minimality of

G, 〈x〉Q is 2-nilpotent, and so 〈x〉Q = 〈x〉 × Q. Thus, G = P × Q by the arbitrariness of x, a

contradiction. 2

Theorem 3.2 If every maximal subgroup of a group G is an SC-group, then one of the following

statements holds:

(I) G is 2-nilpotent;

(II) G = P ⋊ Q is a minimal non-abelian group, where P ∈ Syl2(G) with P elementary

abelian, Q ∈ Sylq(G) with Q cyclic;

(III) G = Q8 ⋊ C3n is a minimal non-nilpotent group, where Q8 is the quaternion group of

order 8, C3n is a cyclic 3-group.

Proof Assume that G is non-2-nilpotent. By hypothesis and Theorem 3.1, every maximal
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subgroup of G is 2-nilpotent. Therefore, by a result in Itǒ [8, IV, Satz 5.4], G is a minimal non-

nilpotent group. Lemma 2.10 implies that G = P ⋊Q, where P ∈ Syl2(G) with exp(P ) ≤ 4, Q ∈

Sylq(G) with Q cyclic. If P is abelian, then P is elementary abelian by Lemma 2.10, and so G

is of type (II). Now we consider that P is non-abelian. Let x be an arbitrary non-trivial element

of P . Then we have that o(x) = 2 or o(x) = 4. By hypothesis, 〈x〉 is self-conjugate-permutable

in P . It follows that 〈x〉 is normal in P from Lemma 2.2. Hence P is a Hamiltonian group. By a

result in [8, III, Satz 7.12], we have that P = Q8 ×A, where Q8 is the quaternion group of order

8, and A is an elementary abelian 2-group. By Lemma 2.10 again,

A ≤ Z(P ) = P ′ ≤ Q8,

which leads to A = 1, so P = Q8. Now,

G/CG(Q8) = NG(Q8)/CG(Q8) . Aut(Q8).

Since Aut(Q8) ∼= S4, the symmetry group of degree 4, we have q = 3. Hence G is of type (III). 2

Theorem 3.3 Let G be a non-solvable group. Then all second maximal subgroups of G are

SC-groups if and only if G is isomorphic to one of the following types:

(I) PSL(2, 2r), where 2r − 1 is a prime;

(II) PSL(2, p), where p is a prime with p > 3, p ≡ 3 or 5 (mod 8), p2 6≡ 1 (mod 5);

(III) PSL(2, 3f), where f is an odd prime with 3f ≡ 3 or 5 (mod 8);

(IV) SL(2, p), where p is a prime with p > 3, p ≡ 3 or 5 (mod 8), p2 6≡ 1 (mod 5);

(V) SL(2, 3f), where f is an odd prime with 3f ≡ 3 or 5 (mod 8).

Proof Assume that G is a non-solvable group. Let M be any maximal subgroup of G. Then

all maximal subgroups of M are SC-groups by hypothesis. It follows that M is 2-nilpotent or a

minimal non-nilpotent group from Theorem 3.2. Therefore, M is solvable. By Lemma 2.11, G

is one of the following groups:

(i) PSL(2, 2r), where 2r − 1 is a prime;

(ii) PSL(2, q), where q is a power of a prime with q ≡ 3 or 5 (mod 8);

(iii) SL(2, q), where q is a power of a prime with q ≡ 3 or 5 (mod 8).

Case 1. G ∼= PSL(2, 2r), where 2r − 1 is a prime.

Suppose G ∼= PSL(2, 2r), where 2r − 1 is a prime. Then by [8, II, Satz 8.27], G has maximal

subgroups:

(1) minimal non-abelian group N of order 2r(2r − 1);

(2) the dihedral groups of order 2(2r ± 1).

It is clear that every maximal subgroup of N is an SC-group. By Lemma 2.7, the dihedral

groups of order 2(2r ± 1) are SC-groups. Hence G is of type (I).

Case 2. G ∼= PSL(2, p), where p is a prime with p > 3, p ≡ 3 or 5 (mod 8), p2 6≡ 1 (mod 5) or

G ∼= PSL(2, 3f ), where f is an odd prime with 3f ≡ 3 or 5 (mod 8).

Suppose G ∼= PSL(2, q), where q is a power of a prime with q ≡ 3 or 5 (mod 8). Let q = pn

with p a prime. We first consider p > 3. If n > 1, then PSL(2, pn) contains a non-solvable
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proper subgroup PSL(2, p), a contradiction. Hence n = 1. Note that p2 6≡ 1 (mod 5). Otherwise,

by [8, II, Satz 8.27], PSL(2, p) contains a proper subgroup which is isomorphic to a non-solvable

alternating group A5 of degree 5, a contradiction. By [8, II, Satz 8.27] again, G has maximal

subgroups:

(1) the alternating group A4 of degree 4;

(2) the dihedral groups of order p± 1;

(3) Frobenius group F with a cyclic complement H of order (p− 1)/2 and kernel K of order

p.

Clearly, all maximal subgroups of A4 are SC-groups. Since p = q ≡ 3 or 5 (mod 8), we have

that p − 1 = 2s or 4s, and p + 1 = 2t or 4t, where s and t are odd integers. Then by Lemma

2.7, the dihedral groups of order p ± 1 are SC-groups. The order of Sylow 2-subgroups of F is

at most 2, so all maximal subgroups of F are SC-groups. Therefore, G is of type (II). We next

consider p = 3. If n is even, then

PSL(2, 9) ≤ PSL(2, pn),

and so PSL(2, pn) contains a non-solvable proper subgroup A5, the alternating group of degree

5, a contradiction. Thus n is odd. If n is an odd composite, then let n = uv, where u is a

prime with u < n. By [8, II, Satz 8.27], we get that PSL(2, 3n) contains a non-solvable proper

subgroup PSL(2, 3u), a contradiction. Therefore, n is an odd prime. Using similar arguments

as mentioned earlier, G has only three kinds of maximal subgroups, and all of them satisfy the

condition. Hence G is of type (III).

Case 3. G ∼= SL(2, p), where p is a prime with p > 3, p ≡ 3 or 5 (mod 8), p2 6≡ 1 (mod 5) or

G ∼= SL(2, 3f), where f is an odd prime with 3f ≡ 3 or 5 (mod 8).

Suppose G ∼= SL(2, q), where q is a power of a prime with q ≡ 3 or 5 (mod 8). Note

that SL(2, q) possesses a unique element of order 2, and the Sylow 2-subgroups of SL(2, q) are

isomorphic to Q8, where Q8 is the quaternion group of order 8. Let x be the unique element

of SL(2, q) of order 2. Then 〈x〉 � SL(2, q), and so 〈x〉 is self-conjugate-permutable in SL(2, q).

Furthermore,

SL(2, q)/〈x〉 ∼= PSL(2, q).

Let q = pf with p a prime. By similar arguments as the proof in Case 2, we conclude that f = 1

and p2 6≡ 1 (mod 5) for p > 3, f is an odd prime for p = 3, and all second maximal subgroups of

SL(2, q)/〈x〉 are SC-groups. Let C be any cyclic subgroup of SL(2, q) of order 4. It is clear that

〈x〉 < C. Let M1 be any second maximal subgroup of SL(2, q) and contains C. Then we get that

C/〈x〉 is self-conjugate-permutable in M1/〈x〉. By Lemma 2.1, C is self-conjugate-permutable in

M1. Therefore, all second maximal subgroups of SL(2, q) are SC-groups. Now we have that G

is of type (IV) when p > 3, G is of type (V) when p = 3.

Conversely, it is easy to examine that a group of one of types (I)–(V) is the group whose all

second maximal subgroups are SC-groups. 2
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4. Groups all of whose maximal subgroups of even order are PSC-groups

In this section, we study groups with the property that all of whose maximal subgroups of

even order are PSC-groups.

Theorem 4.1 Let G be a group of even order. Suppose that all maximal subgroups of G of

even order are PSC-groups. Then G is solvable.

Proof If G is 2-nilpotent, then G has the normal 2-complement M . By Feit-Thompson theorem

[10] on the solvability of group of odd order, M is solvable, and so G is solvable. Now assume

that G is not 2-nilpotent and let M be any maximal subgroup of G. If M is of odd order, then

M is 2-nilpotent. If M is of even order, then M is a PSC-group by hypothesis. By Lemma 2.4,

M is 2-nilpotent. So G is minimal non-2-nilpotent, which implies that G is solvable. 2

Theorem 4.2 Let G be a non-PSC-group of even order. If all maximal subgroups of G of even

order are PSC-groups, then |π(G)| ≤ 3.

Proof By Theorem 4.1, G is solvable. Let π(G) = {p1, p2, . . . , ps} with 2 = p1 < p2 < · · · < ps

and {P1, P2, . . . , Ps} be a Sylow basis of G. If G is a minimal non-PSC-group, then |π(G)| ≤ 2

by Lemma 2.5. So the conclusion holds.

Now we assume that G is not a minimal non-PSC-group. By hypothesis, G possesses a

maximal subgroup M of odd order which is not a PSC-group. Without loss of generality, let

M = P2 · · ·Ps.

Since M is not a PSC-group, there exists a minimal subgroup X of M such that X is not

self-conjugate-permutable in M . Suppose that s ≥ 4. Then for each i ∈ {2, 3, . . . , s− 1}, P1PiPs

is a proper subgroup of G of even order, thus P1PiPs is a PSC-group by hypothesis. If X ≤ Ps,

then X is normal in P1PiPs by Lemma 2.6, and hence X is normal in M , a contradiction.

Therefore, we may assume that X ≤ Pt for some fixed t ∈ {2, 3, . . . , s− 1}. Suppose that t > 2.

Set

H =

t∏

r=2

Pr, K =

s∏

k=t

Pk.

We have M = HK with X ≤ K < M . Since both P1H and P1K are proper subgroups of G of

even order, they are PSC-groups by hypothesis. Therefore, X is self-conjugate-permutable in

K and H normalizes X by Lemmas 2.1 and 2.6. Consequently, X is self-conjugate-permutable

in M by Lemma 2.3, a contradiction. Hence t = 2.

By hypothesis, P1P2Pj is a PSC-group for each j ∈ {3, . . . , s}. Therefore, P1P2Pj is su-

persolvable by Lemma 2.4, which implies that X normalizes Pj for each j ∈ {3, . . . , s}. Hence,

B = X
∏s

j=3
Pj is a proper subgroup of G. If X = P2, then X is a Sylow subgroup of G, and so

X is self-conjugate-permutable in G, a contradiction. If X < P2, then B < M and M = P2B.

Since X is a Sylow subgroup of B, X is self-conjugate-permutable in B. By hypothesis, P1P2 is

a PSC-group. It follows from Lemma 2.6 that P2 normalizes X . Therefore,

M = P2B = NM (X)B,
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and we have that X is self-conjugate-permutable in M by Lemma 2.3, a contradiction. Thus

|π(G)| ≤ 3. 2

Theorem 4.3 Let G be a non-PSC-group of even order. If all maximal subgroups of G of even

order are PSC-groups, then one of the following statements holds:

(I) G is a minimal non-PSC-group;

(II) |G|2 = 2, i.e., the Sylow 2-subgroups of G are of order 2.

Proof Suppose that G is not a minimal non-PSC-group. Then there exists a maximal subgroup

M of G of order odd such that M is not a PSC-group by hypothesis. By Theorem 4.1, G is

solvable. Then we can let M be a Hall 2′-subgroup of G and G = MR, where R ∈ Syl
2
(G). We

prove that R is of order 2 and M is the normal 2-complement from two cases as follows.

Case 1. O2(G) 6= 1.

If O2(G) < R, then M < MO2(G) < MR = G, which contradicts that M is a maximal

subgroup of G. So O2(G) = R is the normal Sylow 2-subgroup of G. Note that M is non-

abelian. For each cyclic subgroup C of M , CR is a proper subgroup of G of even order, and

hence it is a PSC-group by hypothesis. If |R| > 2, then we can choose a subgroup R0 of R of

order 2. Since R0 is self-conjugate-permutable in CR, R0 is normal in CR by Lemma 2.2, which

implies that M normalizes R0. Therefore, M < MR0 < MR = G, a contradiction. So R is of

order 2.

Case 2. O2(G) = 1.

Clearly, O2′(G) 6= 1, and so O2(G) 6= 1, where G = G/O2′(G). As M < MO2′,2(G), it

follows that O2(G) = O2′,2(G) = R from the maximality of M . Thus,

G = NG(R) = NG(R)O2′(G)/O2′ (G).

It follows that G = NG(R)O2′(G). If NG(R) = G, then |R| = 2 by similar arguments as in

Case 1. Now we consider that NG(R) < G. Let H be a Hall 2′-subgroup of NG(R). Then

G = R(HO2′(G)) and M = HO2′(G). By hypothesis, R1 is self-conjugate-permutable in NG(R)

for every subgroup R1 of R of order 2. Therefore, R1 is normal in NG(R) by Lemma 2.2, which

implies that R1H is a subgroup of G. Thus

(R1H)O2′(G) = R1(HO2′(G)) = R1M > M.

It follows that G = R1M , which leads to R = R1. Hence |R| = |R1| = 2. 2

Corollary 4.4 LetG be a non-PSC-group of even order and suppose that all maximal subgroups

of G of even order are PSC-groups. If 4 | |G|, then G is a minimal non-PSC-group.

Proof It is obvious by Theorem 4.3. 2

Theorem 4.5 Let G be a non-PSC-group and π(G) = {2, p}, where P ∈ Sylp(G), R ∈ Syl2(G).

Suppose that all maximal subgroups of G of even order are PSC-groups. Then one of the

following statements holds:

(I) G is a minimal non-PSC-group with |R| > 2;
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(II) G = P ×R, where P is a minimal non-PSC-group and |R| = 2;

(III) G = P ⋊R is a minimal non-PSC-group, where P is elementary abelian and |R| = 2.

Proof If |R| > 2, then by hypothesis and Corollary 4.4, G is a minimal non-PSC-group, and

so G is of type (I).

Now we consider the case |R| = 2.

If G is nilpotent, then P must be a non-PSC-group since G is a non-PSC-group. Further-

more, by hypothesis, M1R is a PSC-group for each maximal subgroup M1 of P , and so M1 is a

PSC-group. Thus, P is a minimal non-PSC-group, and G is of type (II).

If G is non-nilpotent, then G is supersolvable by a result in [11, I, Corollary 1.10]. By

Maschke’s theorem, we have that

P/Φ(P ) = V1/Φ(P )× V2/Φ(P )× · · · × Vd/Φ(P ),

each Vi/Φ(P ) is R-invariant and of order p for all i ∈ {1, 2, . . . , d}. Set Pi =
∏

j 6=i Vj . Then Pi

is a maximal subgroup of P and R-invariant. By hypothesis, PiR is a PSC-group. Lemma 2.2

implies that each subgroup of Pi of order p is normal in PiR. Suppose that CPk
(R) 6= 1 for some

k ∈ {1, 2, . . . , d}. By Lemma 2.9, all elements of Pk of order p are in Z(PkR). By a result in

Itô [8, IV, Satz 5.5], R is normal in PkR. Hence, PkR = Pk×R as Pk is R-invariant. In addition,

[R,Φ(P )] ≤ [R,Pk] = 1. Since Φ(P ) ≤ Pj (j = 1, 2, . . . , d), we have that Φ(P ) ≤ CPj
(R) for all

j ∈ {1, 2, . . . , d}. Therefore, PjR = Pj × R for all j ∈ {1, 2, . . . , d}, which implies that G = PR

is nilpotent, a contradiction. Thus, CPi
(R) = 1 for all i ∈ {1, 2, . . . , d}.

We first prove that CP (R) = 1. If CP (R) 6= 1, then CP (R) is of order p since CP (R)∩Pi = 1.

Let V = CP (R)Φ(P ). Then V is R-invariant and V < P , and therefore V R is a PSC-group

by hypothesis. Using similar arguments as given earlier, we conclude that V R = V × R. Hence

[R,Φ(P )] = 1, which contradicts that CPi
(R) = 1 for all i ∈ {1, 2, . . . , d}. This contradiction

induces that CP (R) = 1, and hence P is abelian by Lemma 2.8.

We next prove that P is elementary abelian. If Ω1(P ) < P , then Ω1(P )R is a PSC-group by

hypothesis. Lemma 2.2 implies that each subgroup A of P of order p is normal in Ω1(P )R, and

so A is normal in G. Thus, G is a PSC-group as |R| = 2, a contradiction. Therefore, Ω1(P ) = P

and P is elementary abelian.

We now get that the maximal subgroup of G of odd order is elementary abelian, and so it is

a PSC-group. Thus, G is a minimal non-PSC-group by hypothesis. So G is of type (III). 2

Corollary 4.6 Let G be a non-PSC-group with π(G) = {2, p} and G be non-nilpotent. Then

all maximal subgroups of G of even order are PSC-groups if and only if G is a minimal non-

PSC-group.

Proof It is clear by Theorem 4.5. 2

Theorem 4.7 Let G be a non-PSC-group of even order and |π(G)| = 3, where P ∈ Sylp(G),

Q ∈ Sylq(G) and R ∈ Syl
2
(G). Suppose that all maximal subgroups of G of even order are

PSC-groups. Then one of the following statements holds:
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(I) G = M ×R, where M is a minimal non-PSC-group and |R| = 2;

(II) G = M ⋊ R = Q ⋊ (P × R), where M is a minimal non-PSC-group with P cyclic, Q

elementary abelian, CQ(R) = 1 and |R| = 2.

Proof Since |π(G)| = 3, G is not a minimal non-PSC-group by Lemma 2.5. Therefore, there

exists a maximal subgroup M of G of order odd such that M is not a PSC-group by hypothesis.

By Theorem 3.1, G is solvable, and hence we can let {P,Q,R} be a Sylow basis of G, where

π(G) = {p, q, r} with r = 2. Furthermore, we can let M be a Hall 2′-subgroup of G and G = MR,

where M = PQ. By Theorem 4.3, we have that |R| = 2 and M is the normal 2-complement.

Suppose CM (R) = 1. Then an automorphism of R acting on M is both of order 2 and fixed-

point-free. Lemma 2.8 implies that M is abelian, and so it is a PSC-group, a contradiction.

This contradiction leads to CM (R) > 1.

By hypothesis, PR is a PSC-group, and so each subgroup of P of order p is normal in

PR by Lemma 2.6. If p | |CM (R)|, then by Lemma 2.9, all elements of P of order p are in

Z(PR). It follows that PR = P × R from Lemma 2.4 and a result in Itô [8, IV, Satz 5.5]. If

q | |CM (R)|, then QR = Q × R by the similar arguments as above. Therefore, MR = M × R

when pq | |CM (R)|. Then M1R is a proper subgroup of G of even order for each proper subgroup

M1 of M , and hence M1R is a PSC-group by hypothesis. So M1 is a PSC-group, and M is a

minimal non-PSC-group. Therefore, G is of type (I).

Without loss of generality, let CP (R) = P and CQ(R) = 1. Since |R| = 2, we have NG(R) =

CG(R) = PR. Set RG = 〈Rg|g ∈ G〉. Then RG ≤ QR. By Frattini argument, we get that

G = NG(R)RG = PRRG, and hence Q ≤ RG. Now we conclude that RG = QR, which implies

that Q is normal in G.

We first prove that P is cyclic. If not, then both P1QR and P2QR are PSC-groups by

hypothesis for two different maximal subgroups P1, P2 of P . By Lemma 2.2, we get that each

subgroup A of Q of order q is normal in P1QR and P2QR, and hence A is normal in G. Since PR

is a PSC-group by hypothesis, Lemma 2.6 implies that T is normal in P for each subgroup T of

P of order p. On the other hand, TQR is a PSC-group by hypothesis. Then by Lemma 2.3, T

is self-conjugate-permutable in G since G = P (TQR). Thus, G is a PSC-group, a contradiction.

We next prove that Q is elementary abelian. It follows that Q is abelian from Lemma 2.8.

If Ω1(Q) < Q, then Ω1(Q)PR is a PSC-group by hypothesis. Lemma 2.2 implies that each

subgroup N of Q of order q is normal in Ω1(Q)PR, and hence N is normal in G. As M is a

non-PSC-group, it is clear that |P | > p and there exists a subgroup T0 of P of order p such that

T0 is not self-conjugate-permutable in M . Consider the subgroup T0QR. By hypothesis, T0 is

self-conjugate-permutable in T0QR. Since G = P (T0QR), T0 is self-conjugate-permutable in G

by Lemma 2.3, a contradiction. Therefore, Ω1(Q) = Q and Q is elementary abelian.

We now prove that M is a minimal non-PSC-group. For any maximal subgroup M1 of M ,

we have that p | |M : M1| or q | |M : M1|. If p | |M : M1|, then Q ≤ M1, and hence M1 � G.

Now we consider that q | |M : M1|. Since QR is a PSC-group, R normalizes each subgroup of

Q of order q by Lemma 2.2. Therefore, R normalizes M1 as Q is elementary abelian. So M1R is
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a proper subgroup of G of even order in both cases. By hypothesis, M1R is a PSC-group and

hence M1 is a PSC-group. Therefore, M is a minimal non-PSC-group and G is of type (II). 2
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