Finite Groups with Some Self-Conjugate-Permutable Subgroups

Wanlin WANG, Pengfei GUO*
School of Mathematics and Statistics, Hainan Normal University, Hainan 571158, P. R. China

Abstract

A subgroup H of a group G is said to be self-conjugate-permutable if $H H^{x}=H^{x} H$ implies $H^{x}=H$ for any x of G. A finite group G is called an $S C$-group ($P S C$-group, respectively) if all cyclic subgroups of G of order 2 or order 4 (prime order or order 4, respectively) are self-conjugate-permutable in G. In this paper, we first investigate the structure of finite non-solvable groups all of whose second maximal subgroups are $S C$-groups; then we mainly investigate the structure of finite groups in which all of maximal subgroups of even order are PSC-groups. In fact, we describe the structure of finite groups which are not $P S C$-groups but all of whose maximal subgroups of even order are $P S C$-groups.

Keywords SC-group; PSC-group; self-conjugate-permutable subgroup; maximal subgroup
MR(2020) Subject Classification 20D10; 20D20

1. Introduction

In this paper, only finite groups are considered and our notation is standard.
One of the important topics in group theory is to characterize the structure of groups, and many classical results about this topic have been obtained, for example, minimal non-nilpotent groups [1], minimal non-supersolvable groups [2], etc.

In 1991, Foguel [3] introduced conjugate permutable subgroup, i.e., a subgroup H of a group G is said to be conjugate permutable if $H H^{x}=H^{x} H$ for any x of G. And he showed that conjugate permutable subgroups must be subnormal. Later, Shen et al. [4] introduced the dual concept of conjugate permutable subgroup, self-conjugate-permutable subgroup. A subgroup H of a group G is said to be self-conjugate-permutable if $H H^{x}=H^{x} H$ implies $H^{x}=H$ for any x of G. It is obvious that maximal subgroups and Hall subgroups of a group G are examples of self-conjugate-permutable subgroups. Shen et al. [4] called a group G a $P S C$-group if every cyclic subgroup of prime order or order 4 is self-conjugate-permutable in G, and investigated the structure of those groups which are not $P S C$-groups but all of whose proper subgroups are $P S C$-groups. Shen et al. [5] characterized $P S C$-groups and proved that a group G is a solvable T-group (A group G is called a T-group if normality is transitive in G) if and only if all prime power order subgroups of G are self-conjugate-permutable in G.

[^0]The aim of this paper is to investigate the structure of groups in which some subgroups are self-conjugate-permutable. We call a group G an $S C$-group if all cyclic subgroups of G of order 2 or order 4 are self-conjugate-permutable in G. In Section 3, we investigate the structure of groups all of whose maximal subgroups are $S C$-groups and determine the non-solvable groups all of whose second maximal subgroups are $S C$-groups. In Section 4, we mainly investigate the structure of finite groups in which all of maximal subgroups of even order are PSC-groups, and describe the structure of finite groups which are not PSC-groups but all of whose maximal subgroups of even order are $P S C$-groups.

2. Preliminary results

We collect some lemmas which will be frequently used in the sequel.
Lemma 2.1 ([4, Lemma 2.1]) Let G be a group. Suppose that H is self-conjugate-permutable in $G, K \leq G$ and $N \unlhd G$. Then
(i) If $H \leq K$, then H is self-conjugate-permutable in K;
(ii) Let $N \leq K$. Then K / N is self-conjugate-permutable in G / N if and only if K is self-conjugate-permutable in G.

Lemma 2.2 ([4, Lemma 2.2]) A subgroup H of G is normal if and only if H is subnormal as well as self-conjugate-permutable in G.

Lemma 2.3 ([4, Lemma 2.3]) Let G be a group. Suppose that $G=A B, A \leq G, B \leq G$. If H is self-conjugate-permutable in B and H is normalized by A, then H is self-conjugate-permutable in G.

Lemma 2.4 ([4, Corollary 3.2]) If G is a PSC-group, then G is supersolvable.
Lemma 2.5 ([5, Theorem 4.2]) If G is a minimal non-PSC-group, then G is solvable and $|\pi(G)| \leq 2$.

Lemma 2.6 ([5, Lemma 2.10]) Let G be a PSC-group. If X is a subgroup of G of order q, where q is the largest prime divisor of $|G|$, then X is normal in G.

Lemma 2.7 Let G be a non-nilpotent dihedral group of order $2 n$ or $4 n$, where n is odd. Then G is an SC-group.

Proof Using similar arguments as the proof in [4, Lemma 2.8], the Lemma is true.
Lemma 2.8 ([6, Theorem 10.1.4]) If a group G has a fixed-point-free automorphism of order 2, then G is abelian.

Lemma 2.9 ([7, Lemma 2.10]) Suppose that all cyclic subgroups of a group G of order p are normal in G for a fixed prime p. If $|Z(G)|_{p} \neq 1$, then all elements of order p of G are in $Z(G)$.

Lemma 2.10 ([8, III, Satz 5.2]) Let G be a minimal non-nilpotent group. Then
(i) $G=P \rtimes Q$, where $P \in \operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G)$ with Q cyclic;
(ii) $C_{P}(Q)=P^{\prime}$;
(iii) $P / \Phi(P)$ is a minimal normal subgroup of $G / \Phi(P)$;
(iv) If P is abelian, then P is elementary abelian. If P is non-abelian, then

$$
Z(P)=P^{\prime}=\Phi(P)
$$

(v) If $p>2$, then the exponent of P is p. If $p=2$, then the exponent of P is 2 or 4 .

Lemma 2.11 ([9, Theorem B]) Let G be a non-solvable group. Suppose that every solvable subgroup of G is either 2-nilpotent or minimal non-nilpotent. Then G is one of the following groups:
(i) $\operatorname{PSL}\left(2,2^{r}\right)$, where $2^{r}-1$ is a prime;
(ii) $\operatorname{PSL}(2, q)$, where q is a power of a prime with $q \equiv 3$ or $5(\bmod 8)$;
(iii) $\mathrm{SL}(2, q)$, where q is a power of a prime with $q \equiv 3$ or $5(\bmod 8)$.

3. Non-solvable groups all of whose second maximal subgroups are $S C$ groups

In this section, we classify these groups all of whose maximal subgroups are $S C$-groups and determine the non-solvable groups all of whose second maximal subgroups are $S C$-groups.

Theorem 3.1 If a group G is an $S C$-group, then G is 2-nilpotent.
Proof Let G be a counterexample of minimal order. It is clear that every maximal subgroup of G satisfies the hypothesis of theorem. Hence, G is a minimal non-2-nilpotent group. By a result in Itǒ [8, IV, Satz 5.4], G is minimal non-nilpotent. It follows from Lemma 2.10 that $G=P \rtimes Q$, where $P \in \operatorname{Syl}_{2}(G)$ with $\exp (P) \leq 4$.

Burnside Lemma implies that P is non-cyclic. Let x be an arbitrary non-trivial element of P. Then we have that $o(x)=2$ or $o(x)=4$. So $\langle x\rangle$ is self-conjugate-permutable in G by hypothesis. It follows from Lemma 2.2 that $\langle x\rangle$ is normal in G. Therefore, $\langle x\rangle Q<G$. By the minimality of $G,\langle x\rangle Q$ is 2-nilpotent, and so $\langle x\rangle Q=\langle x\rangle \times Q$. Thus, $G=P \times Q$ by the arbitrariness of x, a contradiction.

Theorem 3.2 If every maximal subgroup of a group G is an SC-group, then one of the following statements holds:
(I) G is 2-nilpotent;
(II) $G=P \rtimes Q$ is a minimal non-abelian group, where $P \in \operatorname{Syl}_{2}(G)$ with P elementary abelian, $Q \in \operatorname{Syl}_{q}(G)$ with Q cyclic;
(III) $G=Q_{8} \rtimes C_{3^{n}}$ is a minimal non-nilpotent group, where Q_{8} is the quaternion group of order $8, C_{3^{n}}$ is a cyclic 3-group.

Proof Assume that G is non-2-nilpotent. By hypothesis and Theorem 3.1, every maximal
subgroup of G is 2-nilpotent. Therefore, by a result in Itǒ [8, IV, Satz 5.4], G is a minimal nonnilpotent group. Lemma 2.10 implies that $G=P \rtimes Q$, where $P \in \operatorname{Syl}_{2}(G)$ with $\exp (P) \leq 4, Q \in$ $\operatorname{Syl}_{q}(G)$ with Q cyclic. If P is abelian, then P is elementary abelian by Lemma 2.10, and so G is of type (II). Now we consider that P is non-abelian. Let x be an arbitrary non-trivial element of P. Then we have that $o(x)=2$ or $o(x)=4$. By hypothesis, $\langle x\rangle$ is self-conjugate-permutable in P. It follows that $\langle x\rangle$ is normal in P from Lemma 2.2. Hence P is a Hamiltonian group. By a result in [8, III, Satz 7.12], we have that $P=Q_{8} \times A$, where Q_{8} is the quaternion group of order 8 , and A is an elementary abelian 2-group. By Lemma 2.10 again,

$$
A \leq Z(P)=P^{\prime} \leq Q_{8}
$$

which leads to $A=1$, so $P=Q_{8}$. Now,

$$
G / C_{G}\left(Q_{8}\right)=N_{G}\left(Q_{8}\right) / C_{G}\left(Q_{8}\right) \lesssim \operatorname{Aut}\left(Q_{8}\right) .
$$

Since $\operatorname{Aut}\left(Q_{8}\right) \cong S_{4}$, the symmetry group of degree 4 , we have $q=3$. Hence G is of type (III).
Theorem 3.3 Let G be a non-solvable group. Then all second maximal subgroups of G are SC-groups if and only if G is isomorphic to one of the following types:
(I) $\operatorname{PSL}\left(2,2^{r}\right)$, where $2^{r}-1$ is a prime;
(II) $\operatorname{PSL}(2, p)$, where p is a prime with $p>3, p \equiv 3$ or $5(\bmod 8), p^{2} \not \equiv 1(\bmod 5)$;
(III) $\operatorname{PSL}\left(2,3^{f}\right)$, where f is an odd prime with $3^{f} \equiv 3$ or $5(\bmod 8)$;
(IV) $\mathrm{SL}(2, p)$, where p is a prime with $p>3, p \equiv 3$ or $5(\bmod 8), p^{2} \not \equiv 1(\bmod 5)$;
(V) $\operatorname{SL}\left(2,3^{f}\right)$, where f is an odd prime with $3^{f} \equiv 3$ or $5(\bmod 8)$.

Proof Assume that G is a non-solvable group. Let M be any maximal subgroup of G. Then all maximal subgroups of M are $S C$-groups by hypothesis. It follows that M is 2-nilpotent or a minimal non-nilpotent group from Theorem 3.2. Therefore, M is solvable. By Lemma 2.11, G is one of the following groups:
(i) $\operatorname{PSL}\left(2,2^{r}\right)$, where $2^{r}-1$ is a prime;
(ii) $\operatorname{PSL}(2, q)$, where q is a power of a prime with $q \equiv 3$ or $5(\bmod 8)$;
(iii) $\operatorname{SL}(2, q)$, where q is a power of a prime with $q \equiv 3$ or $5(\bmod 8)$.

Case 1. $G \cong \operatorname{PSL}\left(2,2^{r}\right)$, where $2^{r}-1$ is a prime.
Suppose $G \cong \operatorname{PSL}\left(2,2^{r}\right)$, where $2^{r}-1$ is a prime. Then by [8, II, Satz 8.27], G has maximal subgroups:
(1) minimal non-abelian group N of order $2^{r}\left(2^{r}-1\right)$;
(2) the dihedral groups of order $2\left(2^{r} \pm 1\right)$.

It is clear that every maximal subgroup of N is an $S C$-group. By Lemma 2.7, the dihedral groups of order $2\left(2^{r} \pm 1\right)$ are $S C$-groups. Hence G is of type (I).

Case 2. $G \cong \operatorname{PSL}(2, p)$, where p is a prime with $p>3, p \equiv 3$ or $5(\bmod 8), p^{2} \not \equiv 1(\bmod 5)$ or $G \cong \operatorname{PSL}\left(2,3^{f}\right)$, where f is an odd prime with $3^{f} \equiv 3$ or $5(\bmod 8)$.

Suppose $G \cong \operatorname{PSL}(2, q)$, where q is a power of a prime with $q \equiv 3$ or $5(\bmod 8)$. Let $q=p^{n}$ with p a prime. We first consider $p>3$. If $n>1$, then $\operatorname{PSL}\left(2, p^{n}\right)$ contains a non-solvable
proper subgroup $\operatorname{PSL}(2, p)$, a contradiction. Hence $n=1$. Note that $p^{2} \not \equiv 1(\bmod 5)$. Otherwise, by [8, II, Satz 8.27], $\operatorname{PSL}(2, p)$ contains a proper subgroup which is isomorphic to a non-solvable alternating group A_{5} of degree 5, a contradiction. By [8, II, Satz 8.27] again, G has maximal subgroups:
(1) the alternating group A_{4} of degree 4;
(2) the dihedral groups of order $p \pm 1$;
(3) Frobenius group F with a cyclic complement H of order $(p-1) / 2$ and kernel K of order p.

Clearly, all maximal subgroups of A_{4} are $S C$-groups. Since $p=q \equiv 3$ or $5(\bmod 8)$, we have that $p-1=2 s$ or $4 s$, and $p+1=2 t$ or $4 t$, where s and t are odd integers. Then by Lemma 2.7, the dihedral groups of order $p \pm 1$ are $S C$-groups. The order of Sylow 2-subgroups of F is at most 2, so all maximal subgroups of F are $S C$-groups. Therefore, G is of type (II). We next consider $p=3$. If n is even, then

$$
\operatorname{PSL}(2,9) \leq \operatorname{PSL}\left(2, p^{n}\right)
$$

and so $\operatorname{PSL}\left(2, p^{n}\right)$ contains a non-solvable proper subgroup A_{5}, the alternating group of degree 5 , a contradiction. Thus n is odd. If n is an odd composite, then let $n=u v$, where u is a prime with $u<n$. By [8, II, Satz 8.27], we get that $\operatorname{PSL}\left(2,3^{n}\right)$ contains a non-solvable proper subgroup $\operatorname{PSL}\left(2,3^{u}\right)$, a contradiction. Therefore, n is an odd prime. Using similar arguments as mentioned earlier, G has only three kinds of maximal subgroups, and all of them satisfy the condition. Hence G is of type (III).

Case 3. $G \cong \mathrm{SL}(2, p)$, where p is a prime with $p>3, p \equiv 3$ or $5(\bmod 8), p^{2} \not \equiv 1(\bmod 5)$ or $G \cong \operatorname{SL}\left(2,3^{f}\right)$, where f is an odd prime with $3^{f} \equiv 3$ or $5(\bmod 8)$.

Suppose $G \cong \operatorname{SL}(2, q)$, where q is a power of a prime with $q \equiv 3$ or $5(\bmod 8)$. Note that $\operatorname{SL}(2, q)$ possesses a unique element of order 2, and the Sylow 2-subgroups of $\operatorname{SL}(2, q)$ are isomorphic to Q_{8}, where Q_{8} is the quaternion group of order 8 . Let x be the unique element of $\operatorname{SL}(2, q)$ of order 2. Then $\langle x\rangle \unlhd \mathrm{SL}(2, q)$, and so $\langle x\rangle$ is self-conjugate-permutable in $\mathrm{SL}(2, q)$. Furthermore,

$$
\mathrm{SL}(2, q) /\langle x\rangle \cong \operatorname{PSL}(2, q)
$$

Let $q=p^{f}$ with p a prime. By similar arguments as the proof in Case 2 , we conclude that $f=1$ and $p^{2} \not \equiv 1(\bmod 5)$ for $p>3, f$ is an odd prime for $p=3$, and all second maximal subgroups of $\mathrm{SL}(2, q) /\langle x\rangle$ are $S C$-groups. Let C be any cyclic subgroup of $\operatorname{SL}(2, q)$ of order 4 . It is clear that $\langle x\rangle<C$. Let M_{1} be any second maximal subgroup of $\mathrm{SL}(2, q)$ and contains C. Then we get that $C /\langle x\rangle$ is self-conjugate-permutable in $M_{1} /\langle x\rangle$. By Lemma 2.1, C is self-conjugate-permutable in M_{1}. Therefore, all second maximal subgroups of $\operatorname{SL}(2, q)$ are $S C$-groups. Now we have that G is of type (IV) when $p>3, G$ is of type (V) when $p=3$.

Conversely, it is easy to examine that a group of one of types (I)-(V) is the group whose all second maximal subgroups are $S C$-groups.

4. Groups all of whose maximal subgroups of even order are PSC-groups

In this section, we study groups with the property that all of whose maximal subgroups of even order are $P S C$-groups.

Theorem 4.1 Let G be a group of even order. Suppose that all maximal subgroups of G of even order are PSC-groups. Then G is solvable.

Proof If G is 2-nilpotent, then G has the normal 2-complement M. By Feit-Thompson theorem [10] on the solvability of group of odd order, M is solvable, and so G is solvable. Now assume that G is not 2-nilpotent and let M be any maximal subgroup of G. If M is of odd order, then M is 2-nilpotent. If M is of even order, then M is a $P S C$-group by hypothesis. By Lemma 2.4, M is 2-nilpotent. So G is minimal non-2-nilpotent, which implies that G is solvable.

Theorem 4.2 Let G be a non-PSC-group of even order. If all maximal subgroups of G of even order are PSC-groups, then $|\pi(G)| \leq 3$.

Proof By Theorem 4.1, G is solvable. Let $\pi(G)=\left\{p_{1}, p_{2}, \ldots, p_{s}\right\}$ with $2=p_{1}<p_{2}<\cdots<p_{s}$ and $\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}$ be a Sylow basis of G. If G is a minimal non- $P S C$-group, then $|\pi(G)| \leq 2$ by Lemma 2.5. So the conclusion holds.

Now we assume that G is not a minimal non- $P S C$-group. By hypothesis, G possesses a maximal subgroup M of odd order which is not a $P S C$-group. Without loss of generality, let $M=P_{2} \cdots P_{s}$.

Since M is not a $P S C$-group, there exists a minimal subgroup X of M such that X is not self-conjugate-permutable in M. Suppose that $s \geq 4$. Then for each $i \in\{2,3, \ldots, s-1\}, P_{1} P_{i} P_{s}$ is a proper subgroup of G of even order, thus $P_{1} P_{i} P_{s}$ is a $P S C$-group by hypothesis. If $X \leq P_{s}$, then X is normal in $P_{1} P_{i} P_{s}$ by Lemma 2.6, and hence X is normal in M, a contradiction. Therefore, we may assume that $X \leq P_{t}$ for some fixed $t \in\{2,3, \ldots, s-1\}$. Suppose that $t>2$. Set

$$
H=\prod_{r=2}^{t} P_{r}, \quad K=\prod_{k=t}^{s} P_{k} .
$$

We have $M=H K$ with $X \leq K<M$. Since both $P_{1} H$ and $P_{1} K$ are proper subgroups of G of even order, they are $P S C$-groups by hypothesis. Therefore, X is self-conjugate-permutable in K and H normalizes X by Lemmas 2.1 and 2.6. Consequently, X is self-conjugate-permutable in M by Lemma 2.3, a contradiction. Hence $t=2$.

By hypothesis, $P_{1} P_{2} P_{j}$ is a $P S C$-group for each $j \in\{3, \ldots, s\}$. Therefore, $P_{1} P_{2} P_{j}$ is supersolvable by Lemma 2.4, which implies that X normalizes P_{j} for each $j \in\{3, \ldots, s\}$. Hence, $B=X \prod_{j=3}^{s} P_{j}$ is a proper subgroup of G. If $X=P_{2}$, then X is a Sylow subgroup of G, and so X is self-conjugate-permutable in G, a contradiction. If $X<P_{2}$, then $B<M$ and $M=P_{2} B$. Since X is a Sylow subgroup of B, X is self-conjugate-permutable in B. By hypothesis, $P_{1} P_{2}$ is a PSC-group. It follows from Lemma 2.6 that P_{2} normalizes X. Therefore,

$$
M=P_{2} B=N_{M}(X) B
$$

and we have that X is self-conjugate-permutable in M by Lemma 2.3, a contradiction. Thus $|\pi(G)| \leq 3$.

Theorem 4.3 Let G be a non-PSC-group of even order. If all maximal subgroups of G of even order are PSC-groups, then one of the following statements holds:
(I) G is a minimal non-PSC-group;
(II) $|G|_{2}=2$, i.e., the Sylow 2-subgroups of G are of order 2 .

Proof Suppose that G is not a minimal non- $P S C$-group. Then there exists a maximal subgroup M of G of order odd such that M is not a $P S C$-group by hypothesis. By Theorem 4.1, G is solvable. Then we can let M be a Hall 2^{\prime}-subgroup of G and $G=M R$, where $R \in \operatorname{Syl}_{2}(G)$. We prove that R is of order 2 and M is the normal 2-complement from two cases as follows.

Case 1. $O_{2}(G) \neq 1$.
If $O_{2}(G)<R$, then $M<M O_{2}(G)<M R=G$, which contradicts that M is a maximal subgroup of G. So $O_{2}(G)=R$ is the normal Sylow 2-subgroup of G. Note that M is nonabelian. For each cyclic subgroup C of $M, C R$ is a proper subgroup of G of even order, and hence it is a $P S C$-group by hypothesis. If $|R|>2$, then we can choose a subgroup R_{0} of R of order 2. Since R_{0} is self-conjugate-permutable in $C R, R_{0}$ is normal in $C R$ by Lemma 2.2, which implies that M normalizes R_{0}. Therefore, $M<M R_{0}<M R=G$, a contradiction. So R is of order 2.

Case 2. $O_{2}(G)=1$.
Clearly, $O_{2^{\prime}}(G) \neq 1$, and so $O_{2}(\bar{G}) \neq 1$, where $\bar{G}=G / O_{2^{\prime}}(G)$. As $M<M O_{2^{\prime}, 2}(G)$, it follows that $O_{2}(\bar{G})=O_{2^{\prime}, 2}(G)=\bar{R}$ from the maximality of M. Thus,

$$
\bar{G}=N_{\bar{G}}(\bar{R})=N_{G}(R) O_{2^{\prime}}(G) / O_{2^{\prime}}(G) .
$$

It follows that $G=N_{G}(R) O_{2^{\prime}}(G)$. If $N_{G}(R)=G$, then $|R|=2$ by similar arguments as in Case 1. Now we consider that $N_{G}(R)<G$. Let H be a Hall 2^{\prime}-subgroup of $N_{G}(R)$. Then $G=R\left(H O_{2^{\prime}}(G)\right)$ and $M=H O_{2^{\prime}}(G)$. By hypothesis, R_{1} is self-conjugate-permutable in $N_{G}(R)$ for every subgroup R_{1} of R of order 2. Therefore, R_{1} is normal in $N_{G}(R)$ by Lemma 2.2, which implies that $R_{1} H$ is a subgroup of G. Thus

$$
\left(R_{1} H\right) O_{2^{\prime}}(G)=R_{1}\left(H O_{2^{\prime}}(G)\right)=R_{1} M>M
$$

It follows that $G=R_{1} M$, which leads to $R=R_{1}$. Hence $|R|=\left|R_{1}\right|=2$.
Corollary 4.4 Let G be a non-PSC-group of even order and suppose that all maximal subgroups of G of even order are PSC-groups. If $4||G|$, then G is a minimal non-PSC-group.

Proof It is obvious by Theorem 4.3.
Theorem 4.5 Let G be a non-PSC-group and $\pi(G)=\{2, p\}$, where $P \in \operatorname{Syl}_{p}(G), R \in \operatorname{Syl}_{2}(G)$. Suppose that all maximal subgroups of G of even order are PSC-groups. Then one of the following statements holds:
(I) G is a minimal non-PSC-group with $|R|>2$;
(II) $G=P \times R$, where P is a minimal non- $P S C$-group and $|R|=2$;
(III) $G=P \rtimes R$ is a minimal non- $P S C$-group, where P is elementary abelian and $|R|=2$.

Proof If $|R|>2$, then by hypothesis and Corollary 4.4, G is a minimal non- $P S C$-group, and so G is of type (I).

Now we consider the case $|R|=2$.
If G is nilpotent, then P must be a non- $P S C$-group since G is a non- $P S C$-group. Furthermore, by hypothesis, $M_{1} R$ is a $P S C$-group for each maximal subgroup M_{1} of P, and so M_{1} is a $P S C$-group. Thus, P is a minimal non- $P S C$-group, and G is of type (II).

If G is non-nilpotent, then G is supersolvable by a result in [11, I, Corollary 1.10]. By Maschke's theorem, we have that

$$
P / \Phi(P)=V_{1} / \Phi(P) \times V_{2} / \Phi(P) \times \cdots \times V_{d} / \Phi(P)
$$

each $V_{i} / \Phi(P)$ is R-invariant and of order p for all $i \in\{1,2, \ldots, d\}$. Set $P_{i}=\prod_{j \neq i} V_{j}$. Then P_{i} is a maximal subgroup of P and R-invariant. By hypothesis, $P_{i} R$ is a $P S C$-group. Lemma 2.2 implies that each subgroup of P_{i} of order p is normal in $P_{i} R$. Suppose that $C_{P_{k}}(R) \neq 1$ for some $k \in\{1,2, \ldots, d\}$. By Lemma 2.9, all elements of P_{k} of order p are in $Z\left(P_{k} R\right)$. By a result in Itô [8, IV, Satz 5.5], R is normal in $P_{k} R$. Hence, $P_{k} R=P_{k} \times R$ as P_{k} is R-invariant. In addition, $[R, \Phi(P)] \leq\left[R, P_{k}\right]=1$. Since $\Phi(P) \leq P_{j}(j=1,2, \ldots, d)$, we have that $\Phi(P) \leq C_{P_{j}}(R)$ for all $j \in\{1,2, \ldots, d\}$. Therefore, $P_{j} R=P_{j} \times R$ for all $j \in\{1,2, \ldots, d\}$, which implies that $G=P R$ is nilpotent, a contradiction. Thus, $C_{P_{i}}(R)=1$ for all $i \in\{1,2, \ldots, d\}$.

We first prove that $C_{P}(R)=1$. If $C_{P}(R) \neq 1$, then $C_{P}(R)$ is of order p since $C_{P}(R) \cap P_{i}=1$. Let $V=C_{P}(R) \Phi(P)$. Then V is R-invariant and $V<P$, and therefore $V R$ is a $P S C$-group by hypothesis. Using similar arguments as given earlier, we conclude that $V R=V \times R$. Hence $[R, \Phi(P)]=1$, which contradicts that $C_{P_{i}}(R)=1$ for all $i \in\{1,2, \ldots, d\}$. This contradiction induces that $C_{P}(R)=1$, and hence P is abelian by Lemma 2.8.

We next prove that P is elementary abelian. If $\Omega_{1}(P)<P$, then $\Omega_{1}(P) R$ is a $P S C$-group by hypothesis. Lemma 2.2 implies that each subgroup A of P of order p is normal in $\Omega_{1}(P) R$, and so A is normal in G. Thus, G is a $P S C$-group as $|R|=2$, a contradiction. Therefore, $\Omega_{1}(P)=P$ and P is elementary abelian.

We now get that the maximal subgroup of G of odd order is elementary abelian, and so it is a $P S C$-group. Thus, G is a minimal non- $P S C$-group by hypothesis. So G is of type (III).

Corollary 4.6 Let G be a non-PSC-group with $\pi(G)=\{2, p\}$ and G be non-nilpotent. Then all maximal subgroups of G of even order are PSC-groups if and only if G is a minimal non-PSC-group.

Proof It is clear by Theorem 4.5.
Theorem 4.7 Let G be a non-PSC-group of even order and $|\pi(G)|=3$, where $P \in \operatorname{Syl}_{p}(G)$, $Q \in \operatorname{Syl}_{q}(G)$ and $R \in \operatorname{Syl}_{2}(G)$. Suppose that all maximal subgroups of G of even order are PSC-groups. Then one of the following statements holds:
(I) $G=M \times R$, where M is a minimal non-PSC-group and $|R|=2$;
(II) $G=M \rtimes R=Q \rtimes(P \times R)$, where M is a minimal non- $P S C$-group with P cyclic, Q elementary abelian, $C_{Q}(R)=1$ and $|R|=2$.

Proof Since $|\pi(G)|=3, G$ is not a minimal non-PSC-group by Lemma 2.5. Therefore, there exists a maximal subgroup M of G of order odd such that M is not a $P S C$-group by hypothesis. By Theorem 3.1, G is solvable, and hence we can let $\{P, Q, R\}$ be a Sylow basis of G, where $\pi(G)=\{p, q, r\}$ with $r=2$. Furthermore, we can let M be a Hall 2^{\prime}-subgroup of G and $G=M R$, where $M=P Q$. By Theorem 4.3, we have that $|R|=2$ and M is the normal 2-complement.

Suppose $C_{M}(R)=1$. Then an automorphism of R acting on M is both of order 2 and fixed-point-free. Lemma 2.8 implies that M is abelian, and so it is a $P S C$-group, a contradiction. This contradiction leads to $C_{M}(R)>1$.

By hypothesis, $P R$ is a $P S C$-group, and so each subgroup of P of order p is normal in $P R$ by Lemma 2.6. If $p\left|\left|C_{M}(R)\right|\right.$, then by Lemma 2.9, all elements of P of order p are in $Z(P R)$. It follows that $P R=P \times R$ from Lemma 2.4 and a result in Itô [8, IV, Satz 5.5]. If $q\left|\left|C_{M}(R)\right|\right.$, then $Q R=Q \times R$ by the similar arguments as above. Therefore, $M R=M \times R$ when $p q\left|\left|C_{M}(R)\right|\right.$. Then $M_{1} R$ is a proper subgroup of G of even order for each proper subgroup M_{1} of M, and hence $M_{1} R$ is a $P S C$-group by hypothesis. So M_{1} is a $P S C$-group, and M is a minimal non- $P S C$-group. Therefore, G is of type (I).

Without loss of generality, let $C_{P}(R)=P$ and $C_{Q}(R)=1$. Since $|R|=2$, we have $N_{G}(R)=$ $C_{G}(R)=P R$. Set $R^{G}=\left\langle R^{g} \mid g \in G\right\rangle$. Then $R^{G} \leq Q R$. By Frattini argument, we get that $G=N_{G}(R) R^{G}=P R R^{G}$, and hence $Q \leq R^{G}$. Now we conclude that $R^{G}=Q R$, which implies that Q is normal in G.

We first prove that P is cyclic. If not, then both $P_{1} Q R$ and $P_{2} Q R$ are $P S C$-groups by hypothesis for two different maximal subgroups P_{1}, P_{2} of P. By Lemma 2.2, we get that each subgroup A of Q of order q is normal in $P_{1} Q R$ and $P_{2} Q R$, and hence A is normal in G. Since $P R$ is a $P S C$-group by hypothesis, Lemma 2.6 implies that T is normal in P for each subgroup T of P of order p. On the other hand, $T Q R$ is a $P S C$-group by hypothesis. Then by Lemma $2.3, T$ is self-conjugate-permutable in G since $G=P(T Q R)$. Thus, G is a $P S C$-group, a contradiction.

We next prove that Q is elementary abelian. It follows that Q is abelian from Lemma 2.8. If $\Omega_{1}(Q)<Q$, then $\Omega_{1}(Q) P R$ is a $P S C$-group by hypothesis. Lemma 2.2 implies that each subgroup N of Q of order q is normal in $\Omega_{1}(Q) P R$, and hence N is normal in G. As M is a non- $P S C$-group, it is clear that $|P|>p$ and there exists a subgroup T_{0} of P of order p such that T_{0} is not self-conjugate-permutable in M. Consider the subgroup $T_{0} Q R$. By hypothesis, T_{0} is self-conjugate-permutable in $T_{0} Q R$. Since $G=P\left(T_{0} Q R\right), T_{0}$ is self-conjugate-permutable in G by Lemma 2.3, a contradiction. Therefore, $\Omega_{1}(Q)=Q$ and Q is elementary abelian.

We now prove that M is a minimal non- $P S C$-group. For any maximal subgroup M_{1} of M, we have that $p\left|\left|M: M_{1}\right|\right.$ or $\left.q\right|\left|M: M_{1}\right|$. If $p\left|\left|M: M_{1}\right|\right.$, then $Q \leq M_{1}$, and hence $M_{1} \unlhd G$. Now we consider that $q\left|\left|M: M_{1}\right|\right.$. Since $Q R$ is a $P S C$-group, R normalizes each subgroup of Q of order q by Lemma 2.2. Therefore, R normalizes M_{1} as Q is elementary abelian. So $M_{1} R$ is
a proper subgroup of G of even order in both cases. By hypothesis, $M_{1} R$ is a $P S C$-group and hence M_{1} is a $P S C$-group. Therefore, M is a minimal non- $P S C$-group and G is of type (II).

Acknowledgements We express our sincere gratitude to the referees for their valuable and insightful comments which largely polish this paper.

References

[1] O. J. SCHMIDT. Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind. Mat. Sbornik, 1924, 31: 366-372.
[2] K. DOERK. Minimal nicht überaufösbare, endliche Gruppen. Math. Z., 1996, 91: 198-205.
[3] T. FOGUEL. Conjugate permutable subgroups. J. Algebra, 1997, 191(1): 235-239.
[4] Zhencai SHEN, Shirong LI, Wujie SHI. Finite groups all of whose second maximal subgroups are PSC-groups. J. Algebra Appl., 2009, 8(2): 229-242.
[5] Zhencai SHEN, Wei LIU, Xianghong KONG. Finite groups with self-conjugate-permutable subgroups. Comm. Algebra, 2010, 38(5): 1715-1724.
[6] D. GORENSTEIN. Finite Groups. Harper \& Row Publishers, New York, 1968.
[7] Zhencai SHEN, Shirong LI. Finite groups with \mathscr{H}-subgroups or strongly closed subgroups. J. Group Theory, 2012, 15(1): 85-100.
[8] B. HUPPERT. Endliche Gruppen (I). Springer-Verlag, New York, Berlin, 1967.
[9] Shirong LI, Yaoqing ZHAO. Some finite nonsolvable groups characterized by their solvable subgroups. Acta Math. Sinica, 1988, 4(1): 5-13.
[10] W. FEIT, J. G. THOMPSON. Solvability of groups of odd order. Pacific J. Math., 1963, 13(3): 775-1027.
[11] M. WEINSTEIN. Between Nilpotent and Solvable. Polygonal Publ. House, Washington, NJ, 1982.

[^0]: Received April 8, 2023; Accepted January 6, 2024
 Supported by the National Natural Science Foundation of China (Grant No. 12061030) and the Natural Science Foundation of Hainan Province (Grant No. 122RC652).

 * Corresponding author

 E-mail address: guopf999@163.com (Pengfei GUO)

