Non-Existence of Entire Solution of a Type of System of Equations

Zhiwei ZHOU ${ }^{1}$, Ying ZHANG ${ }^{2}$, Zhigang HUANG ${ }^{1, *}$
1. School of Mathematics, Suzhou University of Science and Technology, Jiangsu 215009, P. R. China;
2. Information Construction and Management Center, Suzhou University of Science and Technology, Jiangsu 215009, P. R. China

Abstract In this paper, we will prove that the system of differential-difference equations

$$
\left\{\begin{array}{l}
\left(f(z) f^{\prime}(z)\right)^{n}+p_{1}^{2}(z) g^{m}(z+\eta)=Q_{1}(z) \\
\left(g(z) g^{\prime}(z)\right)^{n}+p_{2}^{2}(z) f^{m}(z+\eta)=Q_{2}(z)
\end{array}\right.
$$

has no transcendental entire solution $(f(z), g(z))$ with $\rho(f, g)<\infty$ such that $\lambda(f)<\rho(f)$ and $\lambda(g)<\rho(g)$, where $P_{1}(z), Q_{1}(z), P_{2}(z)$ and $Q_{2}(z)$ are non-vanishing polynomials.
Keywords transcendental entire function; finite order; system of differential-difference equations

MR(2020) Subject Classification 30D35; 39A45

1. Introduction and main results

We use the standard notations of the Nevanlinna theory, i.e., $m(r, f), N(r, f)$ and $T(r, f)$ to denote the proximity function, the counting function and the characteristic function of a meromorphic function $f(z)$, respectively. Define the order and exponents of convergence of zero sequence of f by

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r}, \quad \lambda(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{+} N\left(r, \frac{1}{f}\right)}{\log r} .
$$

Moreover, we say that a meromorphic function g is a small function with respect to f if $T(r, g)=S(r, f)$, where $S(r, f)=o(T(r, f))$ outside a possible exceptional set of finite linear measure.

Fermat's Last Theorem says that there do not exist nonzero rational numbers x and y and an integer $n \geq 3$, for which $x^{n}+y^{n}=1$. Analogous to the Fermat's Last Theorem, there have been similar function theory investigations, that is, do there exist meromorphic solutions to Fermat type functional equation $f^{n}+g^{n}=1$. In 1966, Gross [1] and Baker [2] proved that the equation does not admit any nonconstant meromorphic solutions in the complex plane \mathbb{C} if $n>3$ and

[^0]does not admit any entire solutions if $n>2$. Since then, this question has aroused the interest of many mathematicians, such as $[3-10]$ and so on.

Consider the equation

$$
\begin{equation*}
f^{m}(z)+g^{n}(z)=1, \tag{1.1}
\end{equation*}
$$

which can be regarded as the analogy of function theory to Fermat diophantine equation $x^{n}+$ $y^{m}=1$ over the complex plane \mathbb{C}, where $m, n \geq 2$ are positive integers. In genearl, Eq. (1.1) has no non-trivial entire solution provided $m+n<m n$ (see [11]). In 1970, Yang [12] further proved

Theorem 1.1 Let m, n be positive integers satisfying $\frac{1}{n}+\frac{1}{m}<1$. Then

$$
\begin{equation*}
a(z) f(z)^{n}+b(z) g(z)^{m}=1 \tag{1.2}
\end{equation*}
$$

does not admit nonconstant entire solutions $f(z)$ and $g(z)$, where a, b are small function with respect to f.

Under the assumption $m>2, n>2$, Yang's result shows that Eq. (1.2) has no non-constant entire solutions. The remain cases, however, are still open. Recently, some researchers began to discuss equations in particular where $g(z)$ has some special relationship with $f(z)$ in Eq. (1.2). Tang and Liao [13] extended a study work of the open problem due to Yang and Li [14] through replacing g by $f^{(k)}$ to investigate entire solutions of the following equation $f(z)^{2}+P(z) f^{(k)}(z)^{2}=$ $Q(z)$, where P, Q are non-zero polynomials. Liu et al. [15] in 2012 took into consideration a type of Fermat type differential-difference equation by changing $g(z)$ to $f(z+c)$,.

Theorem 1.2 ([15]) The equation

$$
\begin{equation*}
f^{\prime}(z)^{n}+f(z+c)^{m}=1 \tag{1.3}
\end{equation*}
$$

has no transcendental entire solutions with finite order, provided that $m \neq n$, where n, m are positive integers.

Further, Chen and Lin [3] investigated the non-existence of finite order transcendental entire solutions of Fermat-type differential-difference equation

$$
\begin{equation*}
\left(f(z) f^{\prime}(z)\right)^{n}+P^{2}(z) f^{m}(z+\eta)=Q(z) \tag{1.4}
\end{equation*}
$$

where $P(z)$ and $Q(z)$ are non-zero polynomials, and proved the following result.
Theorem 1.3 If $m=n$, then the Eq. (1.4) has no finite order transcendental entire solutions, where m and n are positive integers, and $\eta \in \mathbb{C}-\{0\}$.

For more results related to differential or differential-difference of entire functions, we refer the reader to the review article [9]. We know that the existence of solutions of a differential equation is different from the existence of solutions of systems of differential equations. Thus, the question: What is possible for the system of functional equations?

Inspired by Theorem 1.2, Gao et al. [16] considered the nonexistence of entire solutions of a type of system of differential-difference equations of the form

$$
\left\{\begin{array}{l}
\left(\omega^{\prime}\right)^{n_{1}}+\omega_{2}(z+c)^{m_{1}}=Q_{1}(z), \tag{1.5}\\
\left(\omega_{2}^{\prime}\right)^{n_{2}}+\omega_{1}(z+c)^{m_{2}}=Q_{2}(z),
\end{array}\right.
$$

where $Q_{i}(z)(i=1,2)$ are non-zero polynomials.
The order of growth of meromorphic solutions $\left(\omega_{1}(z), \omega_{2}(z)\right)$ of system (1.5) is defined by

$$
\rho=\rho\left(\omega_{1}, \omega_{2}\right)=\max \left\{\rho\left(\omega_{1}\right), \rho\left(\omega_{2}\right)\right\} .
$$

Their result can be stated as follows.
Theorem 1.4 System (1.5) has no meromorphic solutions $\left(\omega_{1}(z), \omega_{2}(z)\right)$ with $\rho\left(\omega_{1}, \omega_{2}\right)<\infty$ if one of the following conditions is satisfied:
(i) $m_{1} m_{2}>n_{1} n_{2}$;
(ii) $m_{i}>\frac{n_{i}}{n_{i}-1}$.

Regarding Theorems 1.3 and 1.4, the purpose of this paper is to investigate the existence of entire solutions of system of equations of the form

$$
\left\{\begin{array}{l}
\left(f(z) f^{\prime}(z)\right)^{n}+p_{1}^{2}(z) g^{m}(z+\eta)=Q_{1}(z) \tag{1.6}\\
\left(g(z) g^{\prime}(z)\right)^{n}+p_{2}^{2}(z) f^{m}(z+\eta)=Q_{2}(z)
\end{array}\right.
$$

where $P_{1}(z), Q_{1}(z), P_{2}(z), Q_{2}(z)$ are non-zero polynomials.
Theorem 1.5 The system of equations

$$
\left\{\begin{array}{l}
\left(f(z) f^{\prime}(z)\right)^{n}+p_{1}^{2}(z) g^{m}(z+\eta)=Q_{1}(z) \tag{1.7}\\
\left(g(z) g^{\prime}(z)\right)^{n}+p_{2}^{2}(z) f^{m}(z+\eta)=Q_{2}(z)
\end{array}\right.
$$

has no non-trivial transcendental entire solution $(f(z), g(z))$ with $\rho(f, g)<\infty$ such that $\lambda(f)<$ $\sigma(f)$ and $\lambda(g)<\sigma(g)$, where $p_{1}(z), Q_{1}(z), p_{2}(z)$ and $Q_{2}(z)$ are non-vanishing polynomials.

2. Preliminary lemmas

In order to prove our result, we need the following lemmas.
Lemma 2.1 ([12]) Let m, n be positive integers satisfying $\frac{1}{m}+\frac{1}{n}<1$. Then there are no non-constant entire solutions $f(z)$ and $g(z)$ that satisfy

$$
a(z) f^{n}(z)+b(z) g^{m}(z)=1
$$

Lemma 2.2 ([17]) If meromorphic functions $f_{j}(z)(j=1,2, \ldots n)(n \geq 2)$ and entire functions $g_{j}(z)(j=1,2, \ldots n)(n \geq 2)$ satisfy the following conditions:
(1) $\sum_{j=1}^{n} f_{j} e^{g_{j}} \equiv 0$;
(2) $g_{i}-g_{j}$ are not constant for $1 \leq j<i \leq n$;
(3) $T\left(r, f_{j}\right)=o\left(T\left(r, e^{g_{h}-g_{l}}\right)\right)(r \rightarrow \infty, r \notin E)$ for $1 \leq j \leq n, 1 \leq h<l \leq n$, where $E \subset(1, \infty)$ is of finite linear measure or logarithmic measure, then $f_{j} \equiv 0(j=1,2, \ldots, n)$.

Lemma 2.3 ([17]) Let $f(z)$ be an entire function of finite order ρ with zeros $\left\{z_{1}, z_{2}, \ldots\right\} \subset \mathbb{C}-\{0\}$ and a k-fold zero at the origin. Then $f(z)=z^{k} P(z) e^{Q(z)}$, where $P(z)$ is the canonical product of $f(z)$ formed with the non-null zeros of $f(z)$, and $Q(z)$ is a polynomial of degree at most ρ.

Lemma 2.4 ([17]) Let $f(z), g(z)$ be nonconstant meromorphic functions in the complex plane.

If $\rho(f)<\rho(g)$, then $\rho(f g)=\rho(g)$.
Lemma 2.5 Let $\alpha(z), \beta(z)$ be non-constant polynomials with $\operatorname{deg}(\alpha(z))=\operatorname{deg}(\beta(z))=d, d \in \mathbb{N}$, $A_{j}(z)(j=1,2, \ldots, n+2)$ be meromorphic functions, and $f_{j}(z)=n \beta(z+\eta)+2 n(n-j) \alpha(z)$, $j=0,1,2, \ldots, n, f_{n+1}=\alpha(z+2 \eta), f_{n+2}=0$, where $n \geq 2, \eta$ is a nonzero constant, which satisfy the following conditions:
(1) $\sum_{j=0}^{n+2} A_{j} e^{f_{j}}=0$;
(2) $T\left(r, A_{j}\right)=o\left(T\left(r, e^{\alpha}\right)\right)(r \rightarrow \infty, r \notin E)$ for $1 \leq j \leq n+2$.

Then $A_{n+1} \equiv 0$ or $A_{n+2} \equiv 0$.
Proof of Lemma 2.5 Suppose that $\alpha(z)=a z^{d}+\cdots, \beta(z)=b z^{d}+\cdots, a \neq 0, b \neq 0$.
Clearly, we see that $\operatorname{deg}\left(f_{i}-f_{j}\right)=d$ for $i \neq j$, where $i, j \in\{0,1, \ldots, n\}$. Further, if $\operatorname{deg}\left(f_{i}-\right.$ $\left.f_{j}\right)=d$ for $i \neq j, i, j \in\{0,1, \ldots, n+2\}$, then it follows from Lemma 2.2 that $A_{n+1}=A_{n+2} \equiv 0$. In the following, we consider two cases:

Case 1. If there exists some $j_{1} \in\{0,1,2, \ldots, n\}$ such that $\operatorname{deg}\left(f_{j_{1}}-f_{n+2}\right)<d$, then we have $n b+2 n\left(n-j_{1}\right) a=0$, and hence $b=-2\left(n-j_{1}\right) a$. We claim that there does not exist $j_{2} \in$ $\{0,1,2, \ldots, n\}, j_{2} \neq j_{1}$ such that $\operatorname{deg}\left(f_{j_{2}}-f_{n+1}\right)<d$. Otherwise, we have $n b+2 n\left(n-j_{2}\right) a=a$ such that $a=2 n\left(j_{2}-j_{1}\right) a$, which is a contradiction. Thus, we have $\sum_{j=0}^{j_{1}-1} A_{j} e^{f_{j}}+\sum_{j_{1}+1}^{n+1} A_{j} e^{f_{j}}+$ $\left(A_{j_{1}} e^{f_{j_{1}}}+A_{n+2}\right)=0$. From Lemma 2.2, we have $A_{n+1} \equiv 0$.

Case 2. If there exists some $j_{1} \in\{0,1,2, \ldots, n\}$ such that $\operatorname{deg}\left(f_{j_{1}}-f_{n+1}\right)<d$, then $n b+2 n(n-$ $\left.j_{1}\right) a=a$. Thus, we have $n b=\left(1-2 n\left(n-j_{1}\right)\right) a$. We claim that there does not exist $f_{j_{2}}$ such that $\operatorname{deg}\left(f_{j_{2}}-f_{n+2}\right)<d$. Otherwise, we have $\left(1-2 n\left(n-j_{1}\right)\right) a=-2 n\left(n-j_{2}\right) a$, which is a contradiction. Therefore, it follows that $\sum_{j=0}^{j_{1}-1} A_{j} e^{f_{j}}+\sum_{j_{1}+1}^{n} A_{j} e^{f_{j}}+\left(A_{j_{1}}+A_{n+1} e^{f_{n+1}-f_{j_{1}}}\right) e^{f_{j_{1}}}+A_{n+2}=0$. Then by Lemma 2.2, we have $A_{n+2} \equiv 0$.

Lemma 2.6 Let $\alpha(z), \beta(z)$ be non-constant polynomials with $\operatorname{deg}(\alpha(z))=\operatorname{deg}(\beta(z))=d, d \in \mathbb{N}$, $A_{j}(z)(j=1,2, \ldots, m+2)$ be meromorphic functions and $f_{j}(z)=m j \alpha(z), j=0,1,2, \ldots, m$, $f_{m+1}=m \beta(z), f_{m+2}=m \beta(z)+2 \alpha(z+\eta)$ where $m \geq 3, \eta$ is a nonzero constant which satisfy the following conditions:
(1) $\sum_{j=0}^{m+2} A_{j} e^{f_{j}}=0$;
(2) $T\left(r, A_{j}\right)=o\left(T\left(r, e^{\alpha}\right)\right)(r \rightarrow \infty, r \notin E)$ for $1 \leq j \leq m+2$.

Then $A_{m+1} \equiv 0$ or $A_{m+2} \equiv 0$.
Proof of Lemma 2.6 Suppose that $\alpha(z)=a z^{d}+\cdots, \beta(z)=b z^{d}+\cdots, a \neq 0, b \neq 0$.
Clearly, we see that $\operatorname{deg}\left(f_{i}-f_{j}\right)=d$ for $i \neq j$, where $i, j \in\{0,1, \ldots, m\}$. Further, if $\operatorname{deg}\left(f_{i}-f_{j}\right)=d$ for $i \neq j, i, j \in\{0,1, \ldots, m+2\}$, then it follows from Lemma 2.2 that $A_{m+1}=A_{m+2} \equiv 0$. In the following, we consider two cases:

Case 1. If there exists some $j_{1} \in\{0,1,2, \ldots, m\}$ such that $\operatorname{deg}\left(f_{j_{1}}-f_{m+2}\right)<d$, then we have $m j_{1} a=m b+2 a$. We claim that there does not exist $j_{2} \in\{0,1,2, \ldots, m\}, j_{2} \neq j_{1}$ such that $\operatorname{deg}\left(f_{j_{2}}-f_{m+1}\right)<d$. Otherwise, we have $m j_{2} a=m b$ such that $m\left(j_{1}-j_{2}\right)=2$, which is a contradiction. Thus, we have $\sum_{j=0}^{j_{1}-1} A_{j} e^{f_{j}}+\sum_{j_{1}+1}^{m+1} A_{j} e^{f_{j}}+\left(A_{j_{1}} e^{f_{j_{1}}-f_{m+2}}+A_{m+2}\right) e^{f_{m+2}}=0$. From Lemma 2.2, we have $A_{m+1} \equiv 0$.

Case 2. If there exists some $j_{1} \in\{0,1,2, \ldots, m\}$ such that $\operatorname{deg}\left(f_{j_{1}}-f_{m+1}\right)<d$, then we have $m j_{1} a=m b$. We claim that there does not exist $f_{j_{2}}$ such that $\operatorname{deg}\left(f_{j_{2}}-f_{m+2}\right)<d$. Otherwise, we have $m\left(j_{2}-j_{1}\right)=2$, which is a contradiction.

Therefore, it follows that

$$
\sum_{j=0}^{j_{1}-1} A_{j} e^{f_{j}}+\sum_{j_{1}+1}^{m} A_{j} e^{f_{j}}+\left(A_{m+1}+A_{j_{1}} e^{f_{j_{1}}-f_{m+1}}\right) e^{f_{m+1}}+A_{m+2} e^{f_{m+2}}=0
$$

Then by Lemma 2.2, we have $A_{m+2} \equiv 0$.

3. Proof of Theorem 1.5

Suppose on the contrary that system (1.7) has a transcendental entire solution $(f(z), g(z))$ with $\lambda(f)<\sigma(f)$ and $\lambda(g)<\sigma(g)$, we will deduce a contradiction. From Lemma 2.3, we can set

$$
\begin{equation*}
f(z)=\omega_{1}(z) e^{\alpha_{1}(z)}, g(z)=\omega_{2}(z) e^{\alpha_{2}(z)} \tag{3.1}
\end{equation*}
$$

where ω_{1}, ω_{2} are the canonical product of f and g, respectively. Therefore, by Lemma 2.1, we only need to consider the following four cases.

Case 1. $n=m=1$.
Then we can rewrite system of Eq. (1.7) into

$$
\left\{\begin{array}{l}
f(z) f^{\prime}(z)+p_{1}^{2}(z) g(z+\eta)=Q_{1}(z) \tag{3.2}\\
g(z) g^{\prime}(z)+p_{2}^{2}(z) f(z+\eta)=Q_{2}(z) .
\end{array}\right.
$$

By calculation, we can get a new system of equations

$$
\left\{\begin{array}{l}
p_{1}^{2}(z) g(z+\eta) g^{\prime}(z+\eta)=g^{\prime}(z+\eta)\left(Q_{1}(z)-f(z) f^{\prime}(z)\right) \tag{3.3}\\
p_{1}^{2}(z) g(z+\eta) g^{\prime}(z+\eta)=p_{1}^{2}(z)\left(Q_{2}(z+\eta)-p_{2}^{2}(z+\eta) f(z+2 \eta)\right)
\end{array}\right.
$$

Thus, Eq. (3.3) leads to

$$
\begin{equation*}
g^{\prime}(z+\eta)\left(f^{\prime}(z) f(z)-Q_{1}(z)\right)=p_{1}^{2}(z) p_{2}^{2}(z+\eta) f(z+2 \eta)-p_{1}^{2}(z) Q_{2}(z+\eta) \tag{3.4}
\end{equation*}
$$

Substituting (3.1) into (3.4), we get

$$
\begin{align*}
& \left(\omega_{2}^{\prime}(z+\eta)+\omega_{2}(z+\eta) \alpha_{2}^{\prime}(z+\eta)\right) e^{\alpha_{2}(z+\eta)}\left(\omega_{1}(z) e^{\alpha_{1}(z)}\left(\omega_{1}^{\prime}(z)+\omega_{1}(z) \alpha_{1}^{\prime}(z)\right) e^{\alpha_{1}(z)}-Q_{1}(z)\right) \\
& \quad=p_{1}^{2}(z) p_{2}^{2}(z+\eta) \omega_{1}(z+2 \eta) e^{\alpha_{1}(z+2 \eta)}-p_{1}^{2}(z) Q_{2}(z+\eta) \tag{3.5}
\end{align*}
$$

For convenience, rewrite Eq. (3.5) into

$$
\begin{equation*}
A(z) B(z) e^{2 \alpha_{1}(z)+\alpha_{2}(z+\eta)}-A(z) Q_{1}(z) e^{\alpha_{2}(z+\eta)}=C(z) e^{\alpha_{1}(z+2 \eta)}+N(z) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{gathered}
A(z)=\omega_{2}^{\prime}(z+\eta)+\omega_{2}(z+\eta) \alpha_{2}^{\prime}(z+\eta), B(z)=\omega_{1}(z)\left(\omega_{1}^{\prime}(z)+\omega_{1}(z) \alpha_{1}^{\prime}(z)\right) \\
C(z)=p_{1}^{2}(z) p_{2}^{2}(z+\eta) \omega_{1}(z+2 \eta), N(z)=-p_{1}^{2}(z) Q_{2}(z+\eta)
\end{gathered}
$$

Next we discuss the following three subcases.
Subcase 1.1. $\operatorname{deg}\left(\alpha_{1}(z)\right)>\operatorname{deg}\left(\alpha_{2}(z)\right)$.

Rewrite (3.6) as

$$
A(z) B(z) e^{2 \alpha_{1}(z)+\alpha_{2}(z+\eta)}=C(z) e^{\alpha_{1}(z+2 \eta)}+\left(N(z) e^{-\alpha_{2}(z+\eta)}+A(z) Q_{1}(z)\right) e^{\alpha_{2}(z+\eta)}
$$

Set $f_{1}(z)=2 \alpha_{1}(z)+\alpha_{2}(z+\eta), f_{2}(z)=\alpha_{2}(z+\eta)$, and $f_{3}(z)=\alpha_{1}(z+2 \eta)$. Then we have $f_{i}-f_{j} \not \equiv$ constant for $1 \leq i<j \leq 3$, and the coefficients $N(z) e^{-\alpha_{2}(z+\eta)}+A(z) Q_{1}(z), A(z) B(z)$, and $C(z)$ are still small functions of $e^{f_{i}-f_{j}}, 1 \leq i<j \leq 3$. Therefore, by Lemma 2.2, we have $C(z) \equiv 0$, so that $\omega_{1}(z) \equiv 0$, which contradicts that $f(z)$ is a nontrivial solution.

Subcase 1.2. $\operatorname{deg}\left(\alpha_{1}(z)\right)<\operatorname{deg}\left(\alpha_{2}(z)\right)$.
Rewrite (3.6) as

$$
\begin{equation*}
\left(A(z) B(z) e^{2 \alpha_{1}(z)}-A(z) Q_{1}(z)\right) e^{\alpha_{2}(z+\eta)}=C(z) e^{\alpha_{1}(z+2 \eta)}+N(z) \tag{3.7}
\end{equation*}
$$

Set $M(z)=A(z) B(z) e^{2 \alpha_{1}(z)}-A(z) Q_{1}(z)$.
If $M(z) \not \equiv 0$, by Lemma 2.4, we have

$$
\rho\left(M(z) e^{\alpha_{2}(z+\eta)}\right)=\rho\left(e^{\alpha_{2}(z+\eta)}\right)>\rho\left(e^{\alpha_{1}(z+\eta)}\right)=\rho\left(C(z) e^{\alpha_{1}(z+2 \eta)}+N(z)\right)
$$

and hence Eq. (3.7) cannot hold.
If $M(z) \equiv 0$, by Lemma 2.2 we get $N(z) \equiv 0, C(z) \equiv 0$, which contradicts that $N(z)$ is a non-zero polynomial.

Subcase 1.3. $\operatorname{deg}\left(\alpha_{1}(z)\right)=\operatorname{deg}\left(\alpha_{2}(z)\right)$.
We set $\alpha_{1}(z)=a z^{n}+\cdots, \alpha_{2}(z)=b z^{n}+\cdots, a \neq 0, b \neq 0$, and $f_{1}(z)=2 \alpha_{1}(z)+\alpha_{2}(z+\eta)$, $f_{2}(z)=\alpha_{2}(z+\eta), f_{3}(z)=\alpha_{1}(z+2 \eta), f_{4}(z)=0$.

Clearly, we have $f_{1}(z)=(2 a+b) z^{n}+\cdots, f_{2}(z)=b z^{n}+\cdots, f_{3}(z)=a z^{n}+\cdots$, and $f_{4}(z)=0$. Now we need to treat the following cases.

If $a \neq-\frac{b}{2}, a \neq-b, a \neq b$, by Lemma 2.2 and Eq. (3.6), we get $N(z) \equiv 0$, which contradicts that $N(z)$ is a non-zero polynomial.

If $a=b$, then we rewrite (3.6) as

$$
\begin{equation*}
A(z) B(z) e^{\alpha_{2}(z+\eta)-\alpha_{1}(z)} e^{3 \alpha_{1}(z)}-\left(A(z) Q_{1}(z) e^{\alpha_{2}(z+\eta)-\alpha_{1}(z+2 \eta)}+C(z)\right) e^{\alpha_{1}(z+2 \eta)}=N(z) \tag{3.8}
\end{equation*}
$$

We note that $\max \left\{\operatorname{deg}\left(\alpha_{2}(z+\eta)-\alpha_{1}(z)\right), \operatorname{deg}\left(\alpha_{2}(z+\eta)-\alpha_{1}(z+2 \eta)\right)\right\}<n$. Thus by Lemma 2.2 and Eq. (3.8), we get $N(z) \equiv 0$, which contradicts that $N(z)$ is a non-zero polynomial.

If $a=-b$, then we rewrite (3.6) as

$$
\begin{equation*}
\left(A(z) B(z) e^{\alpha_{2}(z+\eta)+\alpha_{1}(z)}-C(z) e^{\alpha_{1}(z+2 \eta)-\alpha_{1}(z)}\right) e^{\alpha_{1}(z)}-A(z) Q_{1}(z) e^{\alpha_{2}(z+\eta)}=N(z) \tag{3.9}
\end{equation*}
$$

By Lemma 2.2, we get $N(z) \equiv 0$, which contradicts that $N(z)$ is a non-zero polynomial.
If $a=-\frac{b}{2}$, then we rewrite (3.6) as

$$
\begin{equation*}
-C(z) e^{\alpha_{1}(z+2 \eta)}-A(z) Q_{1}(z) e^{\alpha_{2}(z+\eta)}=N(z)-A(z) B(z) e^{\alpha_{3}(z)} \tag{3.10}
\end{equation*}
$$

where $\alpha_{3}(z)=2 \alpha_{1}(z)+\alpha_{2}(z+\eta)$, and $\operatorname{deg}\left(\alpha_{3}(z)\right)<\operatorname{deg}\left(\alpha_{1}(z)\right)$. By Lemma 2.2, we have $A(z) Q_{1}(z) \equiv 0, C(z) \equiv 0$, which contradicts that $C(z)$ is a non-zero polynomial.

Case 2. $m=1, n \geq 2$.

Thus, by (1.7) we have

$$
\left\{\begin{array}{l}
\left(f(z) f^{\prime}(z)\right)^{n}+p_{1}^{2}(z) g(z+\eta)=Q_{1}(z) \tag{3.11}\\
\left(g(z) g^{\prime}(z)\right)^{n}+p_{2}^{2}(z) f(z+\eta)=Q_{2}(z)
\end{array}\right.
$$

From system (3.11), we get a new system of equations

$$
\left\{\begin{array}{l}
p_{1}^{2 n}(z)\left(g(z+\eta) g^{\prime}(z+\eta)\right)^{n}=\left(g^{\prime}(z+\eta)\right)^{n}\left(Q_{1}(z)-\left(f(z) f^{\prime}(z)\right)^{n}\right)^{n} \tag{3.12}\\
p_{1}^{2 n}(z)\left(g(z+\eta) g^{\prime}(z+\eta)\right)^{n}=p_{1}^{2 n}(z) Q_{2}(z+\eta)-p_{1}^{2 n}(z) p_{2}^{2}(z+\eta) f(z+2 \eta)
\end{array}\right.
$$

Then Eq. (3.12) leads to

$$
p_{1}^{2 n}(z) Q_{2}(z+\eta)-p_{1}^{2 n}(z) p_{2}^{2}(z+\eta) f(z+2 \eta)=\left(g^{\prime}(z+\eta)\right)^{n}\left(Q_{1}(z)-\left(f(z) f^{\prime}(z)\right)^{n}\right)^{n}
$$

and hence we get

$$
A(z)+B(z) f(z+2 \eta)=\left(g^{\prime}(z+\eta)\right)^{n}\left(N(z)-\left(f(z) f^{\prime}(z)\right)^{n}\right)^{n}
$$

where $A(z)=p_{1}^{2 n} Q_{2}(z+\eta), B(z)=-p_{1}^{2 n} p_{2}^{2}(z+\eta), N(z)=Q_{1}(z)$ are polynomials.
Combining this and (3.1), we have

$$
\begin{align*}
A(z)+B(z) \omega_{1}(z+2 \eta) e^{\alpha_{1}(z+2 \eta)}= & \left(\left(\omega_{2}^{\prime}(z+\eta)+\omega_{2}(z+\eta) \alpha_{2}^{\prime}(z+\eta)\right) e^{\alpha_{2}(z+\eta)}\right)^{n} \\
& \left(N(z)-\left(\omega_{1}(z)\left(\omega_{1}^{\prime}(z)+\omega_{1}(z) \alpha_{1}^{\prime}(z)\right) e^{2 \alpha_{1}(z)}\right)^{n}\right)^{n} . \tag{3.13}
\end{align*}
$$

We can rewrite Eq. (3.13) as

$$
\begin{equation*}
A(z)+B(z) \omega_{1}(z+2 \eta) e^{\alpha_{1}(z+2 \eta)}=M(z) e^{n \alpha_{2}(z+\eta)}\left(N(z)+C(z) e^{2 n \alpha_{1}(z)}\right)^{n} \tag{3.14}
\end{equation*}
$$

where $M(z)=\left(\omega_{2}^{\prime}(z+\eta)+\omega_{2}(z+\eta) \alpha_{2}^{\prime}(z+\eta)\right)^{n}, C(z)=-\left(\omega_{1}(z)\left(\omega_{1}^{\prime}(z)+\omega_{1}(z) \alpha_{1}^{\prime}(z)\right)\right)^{n}$.
Next we discuss the following three subcases.
Subcase 2.1. $\operatorname{deg}\left(\alpha_{1}(z)\right)>\operatorname{deg}\left(\alpha_{2}(z)\right)$.
Based on the binomial decomposition, we can rewrite Eq. (3.14) as

$$
\begin{align*}
B(z) \omega_{1}(z+2 \eta) e^{\alpha_{1}(z+2 \eta)}= & M(z) e^{n \alpha_{2}(z+\eta)} \sum_{j=0}^{n-1}\left(C_{n}^{j}(N(z))^{j}(C(z))^{n-j} e^{2 n(n-j) \alpha_{1}(z)}\right)+ \\
& \left(-A(z) e^{-n \alpha_{2}(z+\eta)}+M(z) N^{n}(z)\right) e^{n \alpha_{2}(z+\eta)} \tag{3.15}
\end{align*}
$$

Set $f_{n+1}=\alpha_{1}(z+2 \eta), f_{j}=n \alpha_{2}(z+\eta)+2 n(n-j) \alpha_{1}(z), j=0,1,2, \ldots, n-1, f_{n}=n \alpha_{2}(z+\eta)$. So we have $f_{i}-f_{j} \not \equiv$ constant for $0 \leq i<j \leq n+1$ and $-A(z) e^{-n \alpha_{2}(z+\eta)}+M(z) N^{n}(z), B(z) \omega_{1}(z+$ $2 \eta),(N(z))^{j}(C(z))^{n-j} M(z)$ are still small functions of $e^{f_{i}-f_{j}}, 1 \leq i<j \leq n+1$. By Lemma 2.2, we get $B(z) \equiv 0$, which contradicts that $B(z)$ is a non-zero polynomial.

Subcase 2.2. $\operatorname{deg}\left(\alpha_{1}(z)\right)<\operatorname{deg}\left(\alpha_{2}(z)\right)$.
Set $f_{1}=\alpha_{1}(z+2 \eta), f_{2}=n \alpha_{2}(z+\eta), f_{3}=0, H(z)=\left(N(z)+C(z) e^{2 n \alpha_{1}(z)}\right)^{n}$. Then Eq. (3.14) becomes

$$
A(z)+B(z) \omega_{1}(z+2 \eta) e^{f_{1}(z)}=M(z) H(z) e^{f_{2}(z)}
$$

We have $f_{i}-f_{j} \not \equiv$ constant, $1 \leq i<j \leq 2$, and $A(z) e^{-f_{1}(z)}+B(z) \omega_{1}(z+2 \eta), H(z) M(z)$ are still small functions of $e^{f_{i}-f_{j}}, 1 \leq i<j \leq 2$. By Lemma 2.2, we get $B(z) \equiv 0$, which contradicts that $B(z)$ is a non-zero polynomial.

Subcase 2.3. $\operatorname{deg}\left(\alpha_{1}(z)\right)=\operatorname{deg}\left(\alpha_{2}(z)\right)$.
Set

$$
f_{n+1}=\alpha_{1}(z+2 \eta), f_{n+2}=0, f_{j}=n \alpha_{2}(z+\eta)+2 n(n-j) \alpha_{1}(z), \quad j=0,1,2, \ldots, n
$$

and $\alpha_{1}(z)=a z^{n}+\cdots, \alpha_{2}(z)=b z^{n}+\cdots, a \neq 0, b \neq 0$.
Based on the binomial decomposition, we rewrite Eq. (3.15) as

$$
\begin{equation*}
B(z) \omega_{1}(z+2 \eta) e^{f_{n+1}(z)}+A(z) e^{f_{n+2}(z)}=\sum_{j=0}^{n} B_{j}(z) e^{f_{j}(z)} \tag{3.16}
\end{equation*}
$$

where $B_{j}(z)=C_{n}^{j}(N(z))^{j}(C(z))^{n-j}$.
By Lemma 2.5, we have $A(z) \equiv 0$ or $B(z) \omega_{1}(z+2 \eta) \equiv 0$, which contradicts that $A(z), B(z)$ are non-zero polynomials.

Case 3. $n=1, m \geq 2$.
System of equations can be rewritten as

$$
\left\{\begin{array}{l}
f(z) f^{\prime}(z)+p_{1}^{2}(z) g^{m}(z+\eta)=Q_{1}(z) \tag{3.17}\\
g(z) g^{\prime}(z)+p_{2}^{2}(z) f^{m}(z+\eta)=Q_{2}(z)
\end{array}\right.
$$

From (3.17), we get a new system of equations

$$
\left\{\begin{array}{l}
p_{1}^{2}(z)\left(g(z+\eta) g^{\prime}(z+\eta)\right)^{m}=\left(g^{\prime}(z+\eta)\right)^{m}\left(Q_{1}(z)-f(z) f^{\prime}(z)\right) \tag{3.18}\\
p_{1}^{2}(z)\left(g(z+\eta) g^{\prime}(z+\eta)\right)^{m}=p_{1}^{2}(z)\left(Q_{2}(z+\eta)-p_{2}^{2}(z+\eta) f^{m}(z+2 \eta)\right)^{m}
\end{array}\right.
$$

By calculation, we get

$$
\begin{equation*}
p_{1}^{2}(z)\left(Q_{2}(z+\eta)-p_{2}^{2}(z+\eta) f^{m}(z+2 \eta)\right)^{m}=\left(g^{\prime}(z+\eta)\right)^{m}\left(Q_{1}(z)-f(z) f^{\prime}(z)\right) . \tag{3.19}
\end{equation*}
$$

Substituting (3.1) into Eq. (3.19), we have

$$
\begin{align*}
& \left(\left(\omega_{2}^{\prime}(z+\eta)+\omega_{2}(z+\eta) \alpha_{2}^{\prime}(z+\eta)\right) e^{\alpha_{2}(z+\eta)}\right)^{m}\left(Q_{1}(z)-\omega_{1}(z) e^{\alpha_{1}(z)}\left(\omega_{1}^{\prime}(z)+\omega_{1}(z) \alpha_{1}^{\prime}(z)\right) e^{\alpha_{1}(z)}\right) \\
& \quad=p_{1}^{2}(z)\left(Q_{2}(z+\eta)-p_{2}^{2}(z+\eta) \omega_{1}^{m}(z+2 \eta) e^{m \alpha_{1}(z+2 \eta)}\right)^{m} \tag{3.20}
\end{align*}
$$

We rewrite Eq. (3.20) as

$$
\begin{equation*}
A^{m}(z) e^{m \alpha_{2}(z+\eta)}\left(B(z) e^{2 \alpha_{1}(z)}-Q_{1}(z)\right)=p_{1}^{2}(z)\left(Q_{2}(z+\eta)-C(z) e^{m \alpha_{1}(z+2 \eta)}\right)^{m} \tag{3.21}
\end{equation*}
$$

where $A(z)=\omega_{2}^{\prime}(z+\eta)+\omega_{2}(z+\eta) \alpha_{2}^{\prime}(z+\eta), B(z)=\omega_{1}(z)\left(\omega_{1}^{\prime}(z)+\omega_{1}(z) \alpha_{1}^{\prime}(z)\right), C(z)=$ $p_{2}^{2}(z+\eta) \omega_{1}^{m}(z+2 \eta)$.

We need to treat three subcases:
Subcase 3.1. $\operatorname{deg}\left(\alpha_{1}(z)\right)<\operatorname{deg}\left(\alpha_{2}(z)\right)$.
If $A^{m}(z)\left(B(z) e^{2 \alpha_{1}(z)}-Q_{1}(z)\right) \equiv 0$, then $\left(Q_{2}(z+\eta)-C(z) e^{m \alpha_{1}(z+2 \eta)}\right)^{m} \equiv 0$. Based on the binomial decomposition and Lemma 2.2, we get $Q_{2}^{m}(z+\eta) \equiv 0$, which contradicts that $Q_{2}(z+\eta)$ is a non-zero polynomial.

If $A^{m}(z)\left(B(z) e^{2 \alpha_{1}(z)}-Q_{1}(z)\right) \not \equiv 0$, then by Lemma 2.4, we have

$$
\begin{align*}
& \rho\left(A^{m}(z) e^{m \alpha_{2}(z+\eta)}\left(B(z) e^{2 \alpha_{1}(z)}-Q_{1}(z)\right)\right)=\rho\left(e^{\alpha_{2}(z)}\right) \\
& \quad>\rho\left(e^{\alpha_{1}(z)}\right)=\rho\left(p_{1}^{2}(z)\left(Q_{2}(z+\eta)-C(z) e^{m \alpha_{1}(z+2 \eta)}\right)^{m}\right) \tag{3.22}
\end{align*}
$$

which is a contradiction.

Subcase 3.2. $\operatorname{deg}\left(\alpha_{1}(z)\right)>\operatorname{deg}\left(\alpha_{2}(z)\right)$.
Based on the binomial decomposition, Eq. (3.21) can be written as

$$
\begin{align*}
& A^{m}(z) B(z) e^{m \alpha_{2}(z+\eta)+2 \alpha_{1}(z)}-A^{m}(z) Q_{1}(z) e^{m \alpha_{2}(z+\eta)} \\
& \quad=p_{1}^{2}(z) \sum_{r=0}^{m} C_{m}^{r} Q_{2}^{m-r}(z+\eta) C^{r}(z) e^{m r \alpha_{1}(z+\eta)} . \tag{3.23}
\end{align*}
$$

Set
$f_{j}=m j \alpha_{1}(z+\eta), j=0,1,2, \ldots, m, f_{m+1}=m \alpha_{2}(z+\eta), f_{m+2}=m \alpha_{2}(z+\eta)+2 \alpha_{1}(z)$.
If $m>2$, then for $i \neq j$ we have $\operatorname{deg}\left(f_{i}-f_{j}\right)=\operatorname{deg} \alpha_{1}$, where $i, j \in\{0,1, \ldots, m+2\}$. Clearly, $A^{m}(z) B(z), p_{1}^{2}(z) Q_{2}^{m-r}(z+\eta) C^{r}(z), A^{m}(z) Q_{1}(z)$ are still small functions of $e^{f_{i}-f_{j}}$. Therefore, by Lemma 2.2 we get $Q_{1}(z) \equiv 0$. Since $Q_{1}(z)$ is a non-zero polynomial, we obtain a contradiction.

If $m=2$, then from Eq. (3.23) we obtain

$$
\begin{aligned}
& A^{2}(z) B(z) e^{2 \alpha_{2}(z+\eta)+2 \alpha_{1}(z)}-A^{2}(z) Q_{1}(z) e^{2 \alpha_{2}(z+\eta)} \\
& \quad=2 p_{1}^{2}(z) Q_{2}(z+\eta) C(z) e^{2 \alpha_{1}(z+\eta)}+p_{1}^{2}(z) C^{2}(z) e^{4 \alpha_{1}(z+\eta)}+p_{1}^{2}(z) Q_{2}^{2}(z+\eta)
\end{aligned}
$$

Hence, we get

$$
\begin{align*}
& p_{1}^{2}(z) C^{2}(z) e^{4 \alpha_{1}(z+\eta)}+\left(p_{1}^{2}(z) Q_{2}^{2}(z+\eta) e^{-2 \alpha_{2}(z+\eta)}+A^{2}(z) Q_{1}(z)\right) e^{2 \alpha_{2}(z+\eta)}+ \\
& \quad\left(2 p_{1}^{2}(z) Q_{2}(z+\eta) C(z)-A^{2}(z) B(z) e^{2 \alpha_{2}(z+\eta)+2 \alpha_{1}(z)-2 \alpha_{1}(z+\eta)}\right) e^{2 \alpha_{1}(z+\eta)}=0 . \tag{3.24}
\end{align*}
$$

Set $f_{1}=2 \alpha_{2}(z+\eta), f_{2}=2 \alpha_{1}(z+\eta)$ and $f_{3}=4 \alpha_{1}(z+\eta)$. Clearly, $\operatorname{deg}\left(f_{i}-f_{j}\right)=\operatorname{deg} \alpha_{1}$ for $i \neq j$, and $C^{2}(z)$,

$$
\begin{gathered}
p_{1}^{2}(z) Q_{2}^{2}(z+\eta) e^{-2 \alpha_{2}(z+\eta)}+A^{2}(z) Q_{1}(z), \\
2 p_{1}^{2}(z) Q_{2}(z+\eta) C(z)-A^{2}(z) B(z) e^{2 \alpha_{2}(z+\eta)+2 \alpha_{1}(z)-2 \alpha_{1}(z+\eta)}
\end{gathered}
$$

are still small functions of $e^{f_{i}-f_{j}}, 1 \leq i<j \leq 3$. By Lemma 2.2, we get $p_{1}^{2}(z) C(z) \equiv 0$, which contradicts the fact that $p_{1}(z), p_{2}(z)$ are non-zero polynomials.

Subcase 3.3. $\operatorname{deg}\left(\alpha_{1}(z)\right)=\operatorname{deg}\left(\alpha_{2}(z)\right)$.
It follows from Eq. (3.21) that

$$
\begin{align*}
& A^{m}(z) B(z) e^{m \alpha_{2}(z+\eta)+2 \alpha_{1}(z)}-A^{m}(z) Q_{1}(z) e^{m \alpha_{2}(z+\eta)} \\
& \quad=p_{1}^{2}(z) \sum_{r=0}^{m} C_{m}^{r} Q_{2}^{m-r}(z+\eta) C^{r}(z) e^{m r \alpha_{1}(z+\eta)} \tag{3.25}
\end{align*}
$$

Let

$$
f_{j}=m j \alpha_{1}(z+\eta), j=0,1,2, \ldots, m, f_{m+1}=m \alpha_{2}(z+\eta), f_{m+2}=m \alpha_{2}(z+\eta)+2 \alpha_{1}(z)
$$

and suppose that $\alpha_{1}(z)=a z^{n}+\cdots, \alpha_{2}(z)=b z^{n}+\cdots, a \neq 0, b \neq 0$.
In the following, we discuss two cases.
Subcase 3.3.1. $m>2$.
Rewrite Eq. (3.25) as

$$
\begin{equation*}
A^{m}(z) B(z) e^{f_{m+2}(z)}-A^{m}(z) Q_{1}(z) e^{f_{m+1}(z)}=p_{1}^{2}(z) \sum_{r=0}^{m} B_{r}(z) e^{f_{r}(z)} \tag{3.26}
\end{equation*}
$$

where $B_{r}(z)=C_{m}^{r} Q_{2}^{m-r}(z+\eta) C^{r}(z)$.
If $A(z) \equiv 0$, then by Lemma 2.2 we have $C_{m}^{r} Q_{2}^{m-r}(z+\eta) C^{r}(z) \equiv 0$ for $r=0, \ldots, m$. If $B(z) \equiv 0$, then by Lemma 2.2, we also have for some $r, C_{m}^{r} Q_{2}^{m-r}(z+\eta) C^{r}(z) \equiv 0$. Thus, we have $Q_{2}(z) \equiv 0$ or $C(z) \equiv 0$. This is a contradiction. If $A(z) \not \equiv 0, B(z) \not \equiv 0$, then by Lemma 2.6, we still have $A^{m}(z) B(z) \equiv 0$ or $A^{m}(z) Q_{1}(z) \equiv 0$. Clearly, it is impossible.

Subcase 3.3.2. $m=2$.
Rewrite Eq. (3.25) as

$$
\begin{align*}
& A^{2}(z) B(z) e^{2 \alpha_{2}(z+\eta)+2 \alpha_{1}(z)}-A^{2}(z) Q_{1}(z) e^{2 \alpha_{2}(z+\eta)} \\
& \quad=2 p_{1}^{2}(z) Q_{2}(z+\eta) C(z) e^{2 \alpha_{1}(z+\eta)}+p_{1}^{2}(z) C^{2}(z) e^{4 \alpha_{1}(z+\eta)}+p_{1}^{2}(z) Q_{2}^{2}(z+\eta) \tag{3.27}
\end{align*}
$$

We set $\alpha_{1}(z)=a z^{n}+\cdots, \alpha_{2}(z)=b z^{n}+\cdots, a \neq 0, b \neq 0$, and $f_{1}(z)=2 \alpha_{2}(z+\eta)+2 \alpha_{1}(z)$, $f_{2}(z)=2 \alpha_{2}(z+\eta), f_{3}(z)=2 \alpha_{1}(z+\eta), f_{4}(z)=4 \alpha_{1}(z+\eta), f_{5}(z)=0$.

If $a \neq-b, a \neq b$, by Lemma 2.2, we get $p_{1}^{2}(z) Q_{2}^{2}(z+\eta) \equiv 0$. It is a contradiction because $p_{1}(z), Q_{2}(z+\eta)$ are non-zero polynomials.

If $a=-b$, we rewrite Eq. (3.27) as

$$
\begin{align*}
& A^{2}(z) B(z) e^{\alpha_{3}(z)}-A^{2}(z) Q_{1}(z) e^{2 \alpha_{2}(z+\eta)} \\
& \quad=2 p_{1}^{2}(z) Q_{2}(z+\eta) C(z) e^{2 \alpha_{1}(z+\eta)}+p_{1}^{2}(z) C^{2}(z) e^{4 \alpha_{1}(z+\eta)}+p_{1}^{2}(z) Q_{2}^{2}(z+\eta) \tag{3.28}
\end{align*}
$$

where $\alpha_{3}(z)=2 \alpha_{2}(z+\eta)+2 \alpha_{1}(z)$, and $\operatorname{deg}\left(\alpha_{3}(z)\right)<\operatorname{deg}\left(\alpha_{1}(z)\right)$. By Lemma 2.2, we get $Q_{2}^{2}(z+\eta) \equiv 0$, which contradicts that $Q_{2}(z+\eta)$ is a non-zero polynomial.

If $a=b$, we rewrite Eq. (3.27) as

$$
\begin{align*}
&-A^{2}(z) Q_{1}(z) e^{2 \alpha_{2}(z+\eta)}=\left(2 p_{1}^{2}(z) Q_{2}(z+\eta) C(z)+A^{2}(z) Q_{1}(z) e^{2 \alpha_{2}(z+\eta)-2 \alpha_{1}(z+\eta)}\right) e^{2 \alpha_{1}(z+\eta)}+ \\
& p_{1}^{2}(z) C^{2}(z) e^{4 \alpha_{1}(z+\eta)}+p_{1}^{2}(z) Q_{2}^{2}(z+\eta) \tag{3.29}
\end{align*}
$$

By Lemma 2.2, we get $p_{1}^{2}(z) C^{2}(z) \equiv 0$, which is a contradiction.
Case 4. $n=m=2$.
Clearly, from (1.7), we have

$$
\left\{\begin{array}{l}
\left(f(z) f^{\prime}(z)\right)^{2}+p_{1}^{2}(z) g^{2}(z+\eta)=Q_{1}(z) \tag{3.30}\\
\left(g(z) g^{\prime}(z)\right)^{2}+p_{2}^{2}(z) f^{2}(z+\eta)=Q_{2}(z)
\end{array}\right.
$$

Then it follows from Lemma 2.3 that

$$
\left\{\begin{array}{l}
f(z) f^{\prime}(z)+i p_{1}(z) g(z+\eta)=M_{1}(z) e^{h_{1}(z)} \tag{3.31}\\
f(z) f^{\prime}(z)-i p_{1}(z) g(z+\eta)=M_{2}(z) e^{-h_{1}(z)} \\
g(z) g^{\prime}(z)+i p_{2}(z) f(z+\eta)=M_{3}(z) e^{h_{2}(z)} \\
g(z) g^{\prime}(z)-i p_{2}(z) f(z+\eta)=M_{4}(z) e^{-h_{2}(z)}
\end{array}\right.
$$

where $M_{1}(z) M_{2}(z)=Q_{1}(z), M_{3}(z) M_{4}(z)=Q_{2}(z)$, and $M_{1}(z), M_{2}(z), M_{3}(z), M_{4}(z), h_{1}(z)$, $h_{2}(z)$ are nonzero polynomials.

From (3.31), we get

$$
\begin{equation*}
g(z+\eta)=\frac{M_{1}(z) e^{h_{1}(z)}-M_{2}(z) e^{-h_{1}(z)}}{2 i p_{1}(z)} \tag{3.32}
\end{equation*}
$$

$$
\begin{gather*}
f(z) f^{\prime}(z)=\frac{M_{1}(z) e^{h_{1}(z)}+M_{2}(z) e^{-h_{1}(z)}}{2}, \tag{3.33}\\
f(z+\eta)=\frac{M_{3}(z) e^{h_{2}(z)}-M_{4}(z) e^{-h_{2}(z)}}{2 i p_{2}(z)} \tag{3.34}\\
g(z) g^{\prime}(z+\eta)=\frac{M_{3}(z) e^{h_{2}(z)}+M_{4}(z) e^{-h_{2}(z)}}{2} . \tag{3.35}
\end{gather*}
$$

By (3.34), we get $f(z)=\frac{M_{3}(z-\eta) e^{h_{2}(z-\eta)}-M_{4}(z-\eta) e^{-h_{2}(z-\eta)}}{2 i p_{2}(z-\eta)}$.
We rewrite $f(z)$ as

$$
\begin{equation*}
f(z)=M_{7}(z) e^{h_{2}(z-\eta)}+M_{8}(z) e^{-h_{2}(z-\eta)} \tag{3.36}
\end{equation*}
$$

where $M_{7}(z)=\frac{M_{3}(z-\eta)}{2 i p_{2}(z-\eta)}, M_{8}(z)=\frac{M_{4}(z-\eta)}{2 i p_{2}(z-\eta)}$.
Differentiating (3.36), we get

$$
\begin{equation*}
f^{\prime}(z)=M_{5}(z) e^{h_{2}(z-\eta)}+M_{6}(z) e^{-h_{2}(z-\eta)} \tag{3.37}
\end{equation*}
$$

where

$$
M_{5}(z)=\frac{M_{3}^{\prime}(z-\eta) p_{2}(z)+M_{3}(z-\eta) p_{2}(z-\eta) h_{2}^{\prime}(z-\eta)-p_{2}^{\prime}(z-\eta) M_{3}(z-\eta)}{2 i p_{2}^{2}(z-\eta)}
$$

and

$$
M_{6}(z)=\frac{M_{4}(z-\eta) h_{2}^{\prime}(z-\eta) p_{2}(z-\eta)-M_{4}^{\prime}(z-\eta) p_{2}(z-\eta)+M_{4}(z-\eta) p_{2}^{\prime}(z-\eta)}{2 i p_{2}^{2}(z-\eta)}
$$

Since $M_{3}(z), q(z), h_{2}(z-\eta)$ are nonzero polynomials, we have $\operatorname{deg}\left(M_{3}(z-\eta) p_{2}(z-\eta) h_{2}^{\prime}(z-\right.$ $\eta))>\operatorname{deg}\left(M_{3}^{\prime}(z-\eta) p_{2}(z)\right)$ and $\operatorname{deg}\left(M_{3}(z-\eta) p_{2}(z-\eta) h_{2}^{\prime}(z-\eta)\right)>\operatorname{deg}\left(p_{2}^{\prime}(z-\eta) M_{3}(z-\eta)\right)$. Clearly, $M_{5}(z) \not \equiv 0$. Similarly, we have $M_{6}(z) \not \equiv 0$.

Combining (3.36) and (3.37), we get

$$
\begin{equation*}
f(z) f^{\prime}(z)=M_{5}(z) M_{7}(z) e^{2 h_{2}(z-\eta)}+M_{6}(z) M_{8}(z) e^{-2 h_{2}(z-\eta)}+M_{9}(z) \tag{3.38}
\end{equation*}
$$

where $M_{9}(z)=M_{5}(z) M_{8}(z)+M_{6}(z) M_{7}(z)$.
From (3.33) and (3.38), we have

$$
\begin{equation*}
M_{5}(z) M_{7}(z) e^{2 h_{2}(z-\eta)}+M_{6}(z) M_{8}(z) e^{-2 h_{2}(z-\eta)}+M_{9}(z)=\frac{M_{1}(z) e^{h_{1}(z)}+M_{2}(z) e^{-h_{1}(z)}}{2} \tag{3.39}
\end{equation*}
$$

Now let $f_{1}(z)=2 h_{2}(z-\eta), f_{2}(z)=-2 h_{2}(z-\eta), f_{3}(z)=h_{1}(z), f_{4}(z)=-h_{1}(z), f_{5}(z)=0$. Then Eq. (3.39) can be rewritten as

$$
\begin{equation*}
M_{5}(z) M_{7}(z) e^{f_{1}(z)}+M_{6}(z) M_{8}(z) e^{f_{2}(z)}+M_{9}(z)=\frac{M_{1}(z) e^{f_{3}(z)}+M_{2}(z) e^{f_{4}(z)}}{2} \tag{3.40}
\end{equation*}
$$

Now we need to treat two cases:
Subcase 4.1. $\operatorname{deg}\left(h_{1}(z)\right)>\operatorname{deg}\left(h_{2}(z)\right)$ or $\operatorname{deg}\left(h_{1}(z)\right)<\operatorname{deg}\left(h_{2}(z)\right)$. By Lemma 2.2, we get $M_{5}(z) M_{7}(z) \equiv 0$, which is a contradiction.

Subcase 4.2. $\operatorname{deg}\left(h_{1}(z)\right)=\operatorname{deg}\left(h_{2}(z)\right)$. We set $h_{2}(z)=a z^{n}+\cdots, h_{1}(z)=b z^{n}+\cdots, a \neq 0$, $b \neq 0$.

If $2 a \neq b, 2 a \neq-b$, then by Lemma 2.2, we get $M_{5}(z) M_{7}(z) \equiv 0$. Clearly, it is a contradiction.

If $2 a=b$ or $2 a=-b$, by Lemma 2.2 , we get $M_{9}(z) \equiv 0$, and hence $M_{5}(z) M_{8}(z)+$ $M_{6}(z) M_{7}(z) \equiv 0$.

Thus, $\left(M_{3}^{\prime} p_{2}+M_{3} p_{2} h_{2}^{\prime}-p_{2}^{\prime} M_{3}\right)\left(-\frac{M_{4}}{p_{2}}\right)=\left(M_{4} h_{2}^{\prime} p_{2}-M_{4}^{\prime} p_{2}+M_{4} p_{2}^{\prime}\right)\left(\frac{M_{3}}{p_{2}}\right)$. It follows that $2 M_{3} M_{4} h_{2}^{\prime}=M_{3} M_{4}^{\prime}-M_{3}^{\prime} M_{4}$, which is impossible. The proof of Theorem 1.5 is completed.

Acknowledgements We thank the referees for their time and comments.

References

[1] F. GROSS. On the equation $f^{n}+g^{n}=1$. Bull. Amer. Math. Soc., 1966, 72(1): 86-88.
[2] I. N. BAKER. On a class of meromorphic functions. Proc. Amer. Math. Soc., 1966, 17: 819-822.
[3] Junfan CHEN, Shuqing LIN. On the existence of solutions of Fermat-Type differential-difference equations. Bull. Korean Math. Soc., 2021, 58(4): 83-102.
[4] Minfeng CHEN, Zongsheng GAO, Yunfei DU. Existence of entire solutions of some non-linear differentialdifference equations. J. Inequal. Appl., 2017, Paper No. 90, 17 pp.
[5] Feng LÜ, Qi HAN. On the Fermat-type equation $f^{3}(z)+f^{3}(z+c)=1$. Aequationes Math., 2017, 91(1): 129-136.
[6] Peichu HU, Wenbo WANG, Linlin WU. Entire solutions of differential-difference equations of Fermat type. Bull. Korean. Math. Soc., 2022, 59(1): 83-99.
[7] Kai LIU, Lei MA, Xiaoyang ZHAI. The generalized Fermat type difference equations. Bull. Korean Math. Soc., 2018, 55(6): 1845-1858.
[8] Hua WANG, Hongyan XU, Jin TU. The existence and forms of solutions for some Fermat differentialdifference equations. AIMS Math., 2020, 5(1): 685-700.
[9] Peichu HU, Linlin WU. Topics in Fermat-type functional equations. J. Shandong Univ. Natural Sci., 2021, 56(10): 23-37.
[10] Qiongyan WANG. Admissible meromorphic solutions of algebraic differential-difference equations. Math. Meth. Appl. Sci., 2019, 42(9): 3044-3053.
[11] N. TODA. On the functional equation $\sum_{i=0}^{p} a_{i} f^{n_{i}}=1$. Tohoku Math. J., 1971, 23: 289-299.
[12] Chungchun YANG. A generalization of a theorem of P. Montel on entire functions. Proc. Amer. Math. Soc., 1970, 26: 332-334.
[13] Jiafeng TANG, Liangwen LIAO. The transcendental meromorphic solutions of a certain type of nonlinear differential equations. J. Math. Anal. Appl., 2007, 334(1): 517-527.
[14] Chungchun YANG, Ping LI. On the transcendental solutions of a certain differential equations. Arch. Math. (Basel), 2004, 82(5): 442-448.
[15] Kai LIU, Tingbin CAO, Hongze CAO. Entire solutions of Fermat Type differential-difference equations. Arch. Math. (Basel), 2012, 99(2): 147-155.
[16] Lingyun GAO. On entire solutions of two types of systems of complex differential-difference equations. Acta Math. Sci., 2017, 37(1): 187-194.
[17] Chungchun YANG, Hongxun YI. Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers Group, Dordrecht, 2003.

[^0]: Received March 29, 2023; Accepted August 13, 2023
 Supported by the National Natural Science Foundation of China (Grant No. 11971344).

 * Corresponding author

 E-mail address: 469850863@qq.com (Ying ZHANG); alexehuang@sina.com (Zhigang HUANG)

