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Abstract In this paper, we will prove that the system of differential-difference equations

{

(f(z)f ′(z))
n
+ p21(z)g

m(z + η) = Q1(z),

(g(z)g′(z))
n
+ p22(z)f

m(z + η) = Q2(z),

has no transcendental entire solution (f(z), g(z)) with ρ(f, g) < ∞ such that λ(f) < ρ(f) and

λ(g) < ρ(g), where P1(z), Q1(z), P2(z) and Q2(z) are non-vanishing polynomials.

Keywords transcendental entire function; finite order; system of differential-difference equa-

tions

MR(2020) Subject Classification 30D35; 39A45

1. Introduction and main results

We use the standard notations of the Nevanlinna theory, i.e., m(r, f), N(r, f) and T (r, f)

to denote the proximity function, the counting function and the characteristic function of a

meromorphic function f(z), respectively. Define the order and exponents of convergence of zero

sequence of f by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
, λ(f) = lim sup

r→∞

log+ N(r, 1
f
)

log r
.

Moreover, we say that a meromorphic function g is a small function with respect to f if

T (r, g) = S(r, f), where S(r, f) = o(T (r, f)) outside a possible exceptional set of finite linear

measure.

Fermat’s Last Theorem says that there do not exist nonzero rational numbers x and y and an

integer n ≥ 3, for which xn + yn = 1. Analogous to the Fermat’s Last Theorem, there have been

similar function theory investigations, that is, do there exist meromorphic solutions to Fermat

type functional equation fn + gn = 1. In 1966, Gross [1] and Baker [2] proved that the equation

does not admit any nonconstant meromorphic solutions in the complex plane C if n > 3 and
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does not admit any entire solutions if n > 2. Since then, this question has aroused the interest

of many mathematicians, such as [3–10] and so on.

Consider the equation

fm(z) + gn(z) = 1, (1.1)

which can be regarded as the analogy of function theory to Fermat diophantine equation xn +

ym = 1 over the complex plane C, where m,n ≥ 2 are positive integers. In genearl, Eq. (1.1) has

no non-trivial entire solution provided m+ n < mn (see [11]). In 1970, Yang [12] further proved

Theorem 1.1 Let m,n be positive integers satisfying 1
n
+ 1

m
< 1. Then

a(z)f(z)n + b(z)g(z)m = 1 (1.2)

does not admit nonconstant entire solutions f(z) and g(z), where a, b are small function with

respect to f .

Under the assumption m > 2, n > 2, Yang’s result shows that Eq. (1.2) has no non-constant

entire solutions. The remain cases, however, are still open. Recently, some researchers began to

discuss equations in particular where g(z) has some special relationship with f(z) in Eq. (1.2).

Tang and Liao [13] extended a study work of the open problem due to Yang and Li [14] through

replacing g by f (k) to investigate entire solutions of the following equation f(z)2+P (z)f (k)(z)
2
=

Q(z), where P,Q are non-zero polynomials. Liu et al. [15] in 2012 took into consideration a type

of Fermat type differential-difference equation by changing g(z) to f(z + c),.

Theorem 1.2 ([15]) The equation

f ′(z)n + f(z + c)m = 1, (1.3)

has no transcendental entire solutions with finite order, provided that m 6= n, where n,m are

positive integers.

Further, Chen and Lin [3] investigated the non-existence of finite order transcendental entire

solutions of Fermat-type differential-difference equation
(

f(z)f ′(z))n + P 2(z)fm(z + η) = Q(z), (1.4)

where P (z) and Q(z) are non-zero polynomials, and proved the following result.

Theorem 1.3 If m = n, then the Eq. (1.4) has no finite order transcendental entire solutions,

where m and n are positive integers, and η ∈ C− {0}.

For more results related to differential or differential-difference of entire functions, we refer

the reader to the review article [9]. We know that the existence of solutions of a differential

equation is different from the existence of solutions of systems of differential equations. Thus,

the question: What is possible for the system of functional equations?

Inspired by Theorem 1.2, Gao et al. [16] considered the nonexistence of entire solutions of a

type of system of differential-difference equations of the form
{

(ω′

1)
n1 + ω2(z + c)m1 = Q1(z),

(ω′

2)
n2 + ω1(z + c)m2 = Q2(z),

(1.5)
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where Qi(z) (i = 1, 2) are non-zero polynomials.

The order of growth of meromorphic solutions (ω1(z), ω2(z)) of system (1.5) is defined by

ρ = ρ(ω1, ω2) = max{ρ(ω1), ρ(ω2)}.

Their result can be stated as follows.

Theorem 1.4 System (1.5) has no meromorphic solutions (ω1(z), ω2(z)) with ρ(ω1, ω2) < ∞

if one of the following conditions is satisfied:

(i) m1m2 > n1n2;

(ii) mi >
ni

ni−1 .

Regarding Theorems 1.3 and 1.4, the purpose of this paper is to investigate the existence of

entire solutions of system of equations of the form
{

(f(z)f ′(z))
n
+ p21(z)g

m(z + η) = Q1(z),

(g(z)g′(z))
n
+ p22(z)f

m(z + η) = Q2(z),
(1.6)

where P1(z), Q1(z), P2(z), Q2(z) are non-zero polynomials.

Theorem 1.5 The system of equations
{

(f(z)f ′(z))
n
+ p21(z)g

m(z + η) = Q1(z),

(g(z)g′(z))n + p22(z)f
m(z + η) = Q2(z),

(1.7)

has no non-trivial transcendental entire solution (f(z), g(z)) with ρ(f, g) < ∞ such that λ(f) <

σ(f) and λ(g) < σ(g), where p1(z), Q1(z), p2(z) and Q2(z) are non-vanishing polynomials.

2. Preliminary lemmas

In order to prove our result, we need the following lemmas.

Lemma 2.1 ( [12]) Let m,n be positive integers satisfying 1
m

+ 1
n

< 1. Then there are no

non-constant entire solutions f(z) and g(z) that satisfy

a(z)fn(z) + b(z)gm(z) = 1.

Lemma 2.2 ([17]) If meromorphic functions fj(z) (j = 1, 2, . . . n) (n ≥ 2) and entire functions

gj(z) (j = 1, 2, . . . n) (n ≥ 2) satisfy the following conditions:

(1) Σn
j=1fje

gj ≡ 0;

(2) gi − gj are not constant for 1 ≤ j < i ≤ n;

(3) T (r, fj) = o(T (r, egh−gl)) (r → ∞, r /∈ E) for 1 ≤ j ≤ n, 1 ≤ h < l ≤ n, where

E ⊂ (1,∞) is of finite linear measure or logarithmic measure, then fj ≡ 0 (j = 1, 2, . . . , n).

Lemma 2.3 ([17]) Let f(z) be an entire function of finite order ρ with zeros {z1, z2, . . .} ⊂ C−{0}

and a k-fold zero at the origin. Then f(z) = zkP (z)eQ(z), where P (z) is the canonical product

of f(z) formed with the non-null zeros of f(z), and Q(z) is a polynomial of degree at most ρ.

Lemma 2.4 ([17]) Let f(z), g(z) be nonconstant meromorphic functions in the complex plane.
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If ρ(f) < ρ(g), then ρ(fg) = ρ(g).

Lemma 2.5 Let α(z), β(z) be non-constant polynomials with deg(α(z)) = deg(β(z)) = d, d ∈ N,

Aj(z) (j = 1, 2, . . . , n + 2) be meromorphic functions, and fj(z) = nβ(z + η) + 2n(n − j)α(z),

j = 0, 1, 2, . . . , n, fn+1 = α(z+2η), fn+2 = 0, where n ≥ 2, η is a nonzero constant, which satisfy

the following conditions:

(1)
∑n+2

j=0 Aje
fj = 0;

(2) T (r, Aj) = o(T (r, eα))(r → ∞, r /∈ E) for 1 ≤ j ≤ n+ 2.

Then An+1 ≡ 0 or An+2 ≡ 0.

Proof of Lemma 2.5 Suppose that α(z) = azd + · · · , β(z) = bzd + · · · , a 6= 0, b 6= 0.

Clearly, we see that deg(fi − fj) = d for i 6= j, where i, j ∈ {0, 1, . . . , n}. Further, if deg(fi −

fj) = d for i 6= j, i, j ∈ {0, 1, . . . , n+2}, then it follows from Lemma 2.2 that An+1 = An+2 ≡ 0.

In the following, we consider two cases:

Case 1. If there exists some j1 ∈ {0, 1, 2, . . . , n} such that deg(fj1 − fn+2) < d, then we have

nb + 2n(n − j1)a = 0, and hence b = −2(n − j1)a. We claim that there does not exist j2 ∈

{0, 1, 2, . . . , n}, j2 6= j1 such that deg(fj2 − fn+1) < d. Otherwise, we have nb+ 2n(n− j2)a = a

such that a = 2n(j2−j1)a, which is a contradiction. Thus, we have
∑j1−1

j=0 Aje
fj +

∑n+1
j1+1 Aje

fj +

(Aj1e
fj1 +An+2) = 0. From Lemma 2.2, we have An+1 ≡ 0.

Case 2. If there exists some j1 ∈ {0, 1, 2, . . . , n} such that deg(fj1−fn+1) < d, then nb+2n(n−

j1)a = a. Thus, we have nb = (1−2n(n− j1))a. We claim that there does not exist fj2 such that

deg(fj2−fn+2) < d. Otherwise, we have (1−2n(n−j1))a = −2n(n−j2)a, which is a contradiction.

Therefore, it follows that
∑j1−1

j=0 Aje
fj +

∑n

j1+1 Aje
fj + (Aj1 + An+1e

fn+1−fj1 )efj1 + An+2 = 0.

Then by Lemma 2.2, we have An+2 ≡ 0. 2

Lemma 2.6 Let α(z), β(z) be non-constant polynomials with deg(α(z)) = deg(β(z)) = d, d ∈ N,

Aj(z) (j = 1, 2, . . . ,m + 2) be meromorphic functions and fj(z) = mjα(z), j = 0, 1, 2, . . . ,m,

fm+1 = mβ(z), fm+2 = mβ(z) + 2α(z + η) where m ≥ 3, η is a nonzero constant which satisfy

the following conditions:

(1)
∑m+2

j=0 Aje
fj = 0;

(2) T (r, Aj) = o(T (r, eα)) (r → ∞, r /∈ E) for 1 ≤ j ≤ m+ 2.

Then Am+1 ≡ 0 or Am+2 ≡ 0.

Proof of Lemma 2.6 Suppose that α(z) = azd + · · · , β(z) = bzd + · · · , a 6= 0, b 6= 0.

Clearly, we see that deg(fi − fj) = d for i 6= j, where i, j ∈ {0, 1, . . . ,m}. Further, if

deg(fi − fj) = d for i 6= j, i, j ∈ {0, 1, . . . ,m + 2}, then it follows from Lemma 2.2 that

Am+1 = Am+2 ≡ 0. In the following, we consider two cases:

Case 1. If there exists some j1 ∈ {0, 1, 2, . . . ,m} such that deg(fj1 − fm+2) < d, then we

have mj1a = mb + 2a. We claim that there does not exist j2 ∈ {0, 1, 2, . . . ,m}, j2 6= j1 such

that deg(fj2 − fm+1) < d. Otherwise, we have mj2a = mb such that m(j1 − j2) = 2, which is

a contradiction. Thus, we have
∑j1−1

j=0 Aje
fj +

∑m+1
j1+1 Aje

fj + (Aj1e
fj1−fm+2 +Am+2)e

fm+2 = 0.

From Lemma 2.2, we have Am+1 ≡ 0.
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Case 2. If there exists some j1 ∈ {0, 1, 2, . . . ,m} such that deg(fj1 −fm+1) < d, then we have

mj1a = mb. We claim that there does not exist fj2 such that deg(fj2 − fm+2) < d. Otherwise,

we have m(j2 − j1) = 2, which is a contradiction.

Therefore, it follows that

j1−1
∑

j=0

Aje
fj +

m
∑

j1+1

Aje
fj + (Am+1 +Aj1e

fj1−fm+1)efm+1 +Am+2e
fm+2 = 0.

Then by Lemma 2.2, we have Am+2 ≡ 0. 2

3. Proof of Theorem 1.5

Suppose on the contrary that system (1.7) has a transcendental entire solution (f(z), g(z))

with λ(f) < σ(f) and λ(g) < σ(g), we will deduce a contradiction. From Lemma 2.3, we can set

f(z) = ω1(z)e
α1(z), g(z) = ω2(z)e

α2(z), (3.1)

where ω1, ω2 are the canonical product of f and g, respectively. Therefore, by Lemma 2.1, we

only need to consider the following four cases.

Case 1. n = m = 1.

Then we can rewrite system of Eq. (1.7) into
{

f(z)f ′(z) + p21(z)g(z + η) = Q1(z)

g(z)g′(z) + p22(z)f(z + η) = Q2(z).
(3.2)

By calculation, we can get a new system of equations
{

p21(z)g(z + η)g′(z + η) = g′(z + η)
(

Q1(z)− f(z)f ′(z))

p21(z)g(z + η)g′(z + η) = p21(z)
(

Q2(z + η)− p22(z + η)f(z + 2η)).
(3.3)

Thus, Eq. (3.3) leads to

g′(z + η)
(

f ′(z)f(z)−Q1(z)) = p21(z)p
2
2(z + η)f(z + 2η)− p21(z)Q2(z + η). (3.4)

Substituting (3.1) into (3.4), we get

(ω′

2(z + η) + ω2(z + η)α′

2(z + η))eα2(z+η)(ω1(z)e
α1(z)(ω′

1(z) + ω1(z)α
′

1(z))e
α1(z) −Q1(z))

= p21(z)p
2
2(z + η)ω1(z + 2η)eα1(z+2η) − p21(z)Q2(z + η). (3.5)

For convenience, rewrite Eq. (3.5) into

A(z)B(z)e2α1(z)+α2(z+η) −A(z)Q1(z)e
α2(z+η) = C(z)eα1(z+2η) +N(z), (3.6)

where

A(z) = ω′

2(z + η) + ω2(z + η)α′

2(z + η), B(z) = ω1(z)
(

ω′

1(z) + ω1(z)α
′

1(z)),

C(z) = p21(z)p
2
2(z + η)ω1(z + 2η), N(z) = −p21(z)Q2(z + η).

Next we discuss the following three subcases.

Subcase 1.1. deg(α1(z)) > deg(α2(z)).
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Rewrite (3.6) as

A(z)B(z)e2α1(z)+α2(z+η) = C(z)eα1(z+2η) + (N(z)e−α2(z+η) +A(z)Q1(z))e
α2(z+η).

Set f1(z) = 2α1(z)+α2(z+η), f2(z) = α2(z+η), and f3(z) = α1(z+2η). Then we have fi−fj 6≡

constant for 1 ≤ i < j ≤ 3, and the coefficients N(z)e−α2(z+η) +A(z)Q1(z), A(z)B(z), and C(z)

are still small functions of efi−fj , 1 ≤ i < j ≤ 3. Therefore, by Lemma 2.2, we have C(z) ≡ 0,

so that ω1(z) ≡ 0, which contradicts that f(z) is a nontrivial solution.

Subcase 1.2. deg(α1(z)) < deg(α2(z)).

Rewrite (3.6) as

(A(z)B(z)e2α1(z) −A(z)Q1(z))e
α2(z+η) = C(z)eα1(z+2η) +N(z). (3.7)

Set M(z) = A(z)B(z)e2α1(z) −A(z)Q1(z).

If M(z) 6≡ 0, by Lemma 2.4, we have

ρ(M(z)eα2(z+η)) = ρ(eα2(z+η)) > ρ(eα1(z+η)) = ρ(C(z)eα1(z+2η) +N(z))

and hence Eq. (3.7) cannot hold.

If M(z) ≡ 0, by Lemma 2.2 we get N(z) ≡ 0, C(z) ≡ 0, which contradicts that N(z) is a

non-zero polynomial.

Subcase 1.3. deg(α1(z)) = deg(α2(z)).

We set α1(z) = azn + · · · , α2(z) = bzn + · · · , a 6= 0, b 6= 0, and f1(z) = 2α1(z) + α2(z + η),

f2(z) = α2(z + η), f3(z) = α1(z + 2η), f4(z) = 0.

Clearly, we have f1(z) = (2a+b)zn+ · · · , f2(z) = bzn+ · · · , f3(z) = azn+ · · · , and f4(z) = 0.

Now we need to treat the following cases.

If a 6= − b
2 , a 6= −b, a 6= b, by Lemma 2.2 and Eq. (3.6), we get N(z) ≡ 0, which contradicts

that N(z) is a non-zero polynomial.

If a = b, then we rewrite (3.6) as

A(z)B(z)eα2(z+η)−α1(z)e3α1(z) − (A(z)Q1(z)e
α2(z+η)−α1(z+2η) + C(z))eα1(z+2η) = N(z). (3.8)

We note that max{deg(α2(z + η) − α1(z)), deg(α2(z + η) − α1(z + 2η))} < n. Thus by Lemma

2.2 and Eq. (3.8), we get N(z) ≡ 0, which contradicts that N(z) is a non-zero polynomial.

If a = −b, then we rewrite (3.6) as

(

A(z)B(z)eα2(z+η)+α1(z) − C(z)eα1(z+2η)−α1(z))eα1(z) −A(z)Q1(z)e
α2(z+η) = N(z). (3.9)

By Lemma 2.2, we get N(z) ≡ 0, which contradicts that N(z) is a non-zero polynomial.

If a = − b
2 , then we rewrite (3.6) as

− C(z)eα1(z+2η) −A(z)Q1(z)e
α2(z+η) = N(z)−A(z)B(z)eα3(z), (3.10)

where α3(z) = 2α1(z) + α2(z + η), and deg(α3(z)) < deg(α1(z)). By Lemma 2.2, we have

A(z)Q1(z) ≡ 0, C(z) ≡ 0, which contradicts that C(z) is a non-zero polynomial.

Case 2. m = 1, n ≥ 2.
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Thus, by (1.7) we have
{

(f(z)f ′(z))
n
+ p21(z)g(z + η) = Q1(z)

(g(z)g′(z))
n
+ p22(z)f(z + η) = Q2(z).

(3.11)

From system (3.11), we get a new system of equations
{

p2n1 (z)
(

g(z + η)g′(z + η))
n
= (g′(z + η))n

(

Q1(z)− (f(z)f ′(z))
n
)
n

p2n1 (z)
(

g(z + η)g′(z + η))
n
= p2n1 (z)Q2(z + η)− p2n1 (z)p22(z + η)f(z + 2η).

(3.12)

Then Eq. (3.12) leads to

p2n1 (z)Q2(z + η)− p2n1 (z)p22(z + η)f(z + 2η) = (g′(z + η))n
(

Q1(z)− (f(z)f ′(z))n)n

and hence we get

A(z) +B(z)f(z + 2η) = (g′(z + η))n(N(z)− (f(z)f ′(z))n)n,

where A(z) = p2n1 Q2(z + η), B(z) = −p2n1 p22(z + η), N(z) = Q1(z) are polynomials.

Combining this and (3.1), we have

A(z) +B(z)ω1(z + 2η)eα1(z+2η) =((ω′

2(z + η) + ω2(z + η)α′

2(z + η))eα2(z+η))n

(N(z)− (ω1(z)(ω
′

1(z) + ω1(z)α
′

1(z))e
2α1(z))n)n. (3.13)

We can rewrite Eq. (3.13) as

A(z) +B(z)ω1(z + 2η)eα1(z+2η) = M(z)enα2(z+η)
(

N(z) + C(z)e2nα1(z))n, (3.14)

where M(z) = (ω′

2(z + η) + ω2(z + η)α′

2(z + η))n, C(z) = −(ω1(z)(ω
′

1(z) + ω1(z)α
′

1(z)))
n.

Next we discuss the following three subcases.

Subcase 2.1. deg(α1(z)) > deg(α2(z)).

Based on the binomial decomposition, we can rewrite Eq. (3.14) as

B(z)ω1(z + 2η)eα1(z+2η) =M(z)enα2(z+η)
n−1
∑

j=0

(Cj
n(N(z))j(C(z))n−je2n(n−j)α1(z))+

(−A(z)e−nα2(z+η) +M(z)Nn(z))enα2(z+η). (3.15)

Set fn+1 = α1(z+2η), fj = nα2(z+η)+2n(n−j)α1(z), j = 0, 1, 2, . . . , n−1, fn = nα2(z+η). So

we have fi−fj 6≡ constant for 0 ≤ i < j ≤ n+1 and −A(z)e−nα2(z+η)+M(z)Nn(z), B(z)ω1(z+

2η), (N(z))j(C(z))n−jM(z) are still small functions of efi−fj , 1 ≤ i < j ≤ n+1. By Lemma 2.2,

we get B(z) ≡ 0, which contradicts that B(z) is a non-zero polynomial.

Subcase 2.2. deg(α1(z)) < deg(α2(z)).

Set f1 = α1(z+2η), f2 = nα2(z+η), f3 = 0, H(z) = (N(z)+C(z)e2nα1(z))n. Then Eq. (3.14)

becomes

A(z) +B(z)ω1(z + 2η)ef1(z) = M(z)H(z)ef2(z).

We have fi − fj 6≡ constant, 1 ≤ i < j ≤ 2, and A(z)e−f1(z) + B(z)ω1(z + 2η), H(z)M(z) are

still small functions of efi−fj , 1 ≤ i < j ≤ 2. By Lemma 2.2, we get B(z) ≡ 0, which contradicts

that B(z) is a non-zero polynomial.
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Subcase 2.3. deg(α1(z)) = deg(α2(z)).

Set

fn+1 = α1(z + 2η), fn+2 = 0, fj = nα2(z + η) + 2n(n− j)α1(z), j = 0, 1, 2, . . . , n

and α1(z) = azn + · · · , α2(z) = bzn + · · · , a 6= 0, b 6= 0.

Based on the binomial decomposition, we rewrite Eq. (3.15) as

B(z)ω1(z + 2η)efn+1(z) +A(z)efn+2(z) = Σn
j=0Bj(z)e

fj(z), (3.16)

where Bj(z) = Cj
n(N(z))j(C(z))n−j .

By Lemma 2.5, we have A(z) ≡ 0 or B(z)ω1(z + 2η) ≡ 0, which contradicts that A(z), B(z)

are non-zero polynomials.

Case 3. n = 1, m ≥ 2.

System of equations can be rewritten as
{

f(z)f ′(z) + p21(z)g
m(z + η) = Q1(z)

g(z)g′(z) + p22(z)f
m(z + η) = Q2(z).

(3.17)

From (3.17), we get a new system of equations
{

p21(z)
(

g(z + η)g′(z + η))m =
(

g′(z + η))m
(

Q1(z)− f(z)f ′(z))

p21(z)
(

g(z + η)g′(z + η))m = p21(z)
(

Q2(z + η)− p22(z + η)fm(z + 2η))m.
(3.18)

By calculation, we get

p21(z)
(

Q2(z + η)− p22(z + η)fm(z + 2η))m = (g′(z + η))m(Q1(z)− f(z)f ′(z)). (3.19)

Substituting (3.1) into Eq. (3.19), we have

((ω′

2(z + η) + ω2(z + η)α′

2(z + η))eα2(z+η))m(Q1(z)− ω1(z)e
α1(z)(ω′

1(z) + ω1(z)α
′

1(z))e
α1(z))

= p21(z)
(

Q2(z + η)− p22(z + η)ωm
1 (z + 2η)emα1(z+2η))m. (3.20)

We rewrite Eq. (3.20) as

Am(z)emα2(z+η)
(

B(z)e2α1(z) −Q1(z)) = p21(z)
(

Q2(z + η)− C(z)emα1(z+2η))m, (3.21)

where A(z) = ω′

2(z + η) + ω2(z + η)α′

2(z + η), B(z) = ω1(z)(ω
′

1(z) + ω1(z)α
′

1(z)), C(z) =

p22(z + η)ωm
1 (z + 2η).

We need to treat three subcases:

Subcase 3.1. deg(α1(z)) < deg(α2(z)).

If Am(z)(B(z)e2α1(z) −Q1(z)) ≡ 0, then (Q2(z + η) − C(z)emα1(z+2η))m ≡ 0. Based on the

binomial decomposition and Lemma 2.2, we get Qm
2 (z+η) ≡ 0, which contradicts that Q2(z+η)

is a non-zero polynomial.

If Am(z)
(

B(z)e2α1(z) −Q1(z)) 6≡ 0, then by Lemma 2.4, we have

ρ(Am(z)emα2(z+η)
(

B(z)e2α1(z) −Q1(z))) = ρ(eα2(z))

> ρ(eα1(z)) = ρ(p21(z)
(

Q2(z + η)− C(z)emα1(z+2η))m), (3.22)

which is a contradiction.
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Subcase 3.2. deg(α1(z)) > deg(α2(z)).

Based on the binomial decomposition, Eq. (3.21) can be written as

Am(z)B(z)emα2(z+η)+2α1(z) −Am(z)Q1(z)e
mα2(z+η)

= p21(z)

m
∑

r=0

Cr
mQm−r

2 (z + η)Cr(z)emrα1(z+η). (3.23)

Set

fj = mjα1(z + η), j = 0, 1, 2, . . . ,m, fm+1 = mα2(z + η), fm+2 = mα2(z + η) + 2α1(z).

If m > 2, then for i 6= j we have deg(fi−fj) = degα1, where i, j ∈ {0, 1, . . . ,m+2}. Clearly,

Am(z)B(z), p21(z)Q
m−r
2 (z + η)Cr(z), Am(z)Q1(z) are still small functions of efi−fj . Therefore,

by Lemma 2.2 we get Q1(z) ≡ 0. Since Q1(z) is a non-zero polynomial, we obtain a contradiction.

If m = 2, then from Eq. (3.23) we obtain

A2(z)B(z)e2α2(z+η)+2α1(z) −A2(z)Q1(z)e
2α2(z+η)

= 2p21(z)Q2(z + η)C(z)e2α1(z+η) + p21(z)C
2(z)e4α1(z+η) + p21(z)Q

2
2(z + η).

Hence, we get

p21(z)C
2(z)e4α1(z+η) + (p21(z)Q

2
2(z + η)e−2α2(z+η) +A2(z)Q1(z))e

2α2(z+η)+

(2p21(z)Q2(z + η)C(z)−A2(z)B(z)e2α2(z+η)+2α1(z)−2α1(z+η))e2α1(z+η) = 0. (3.24)

Set f1 = 2α2(z + η), f2 = 2α1(z + η) and f3 = 4α1(z + η). Clearly, deg(fi − fj) = degα1 for

i 6= j, and C2(z),

p21(z)Q
2
2(z + η)e−2α2(z+η) +A2(z)Q1(z),

2p21(z)Q2(z + η)C(z)−A2(z)B(z)e2α2(z+η)+2α1(z)−2α1(z+η)

are still small functions of efi−fj , 1 ≤ i < j ≤ 3. By Lemma 2.2, we get p21(z)C(z) ≡ 0, which

contradicts the fact that p1(z), p2(z) are non-zero polynomials.

Subcase 3.3. deg(α1(z)) = deg(α2(z)).

It follows from Eq. (3.21) that

Am(z)B(z)emα2(z+η)+2α1(z) −Am(z)Q1(z)e
mα2(z+η)

= p21(z)
m
∑

r=0

Cr
mQm−r

2 (z + η)Cr(z)emrα1(z+η). (3.25)

Let

fj = mjα1(z + η), j = 0, 1, 2, . . . ,m, fm+1 = mα2(z + η), fm+2 = mα2(z + η) + 2α1(z)

and suppose that α1(z) = azn + · · · , α2(z) = bzn + · · · , a 6= 0, b 6= 0.

In the following, we discuss two cases.

Subcase 3.3.1. m > 2.

Rewrite Eq. (3.25) as

Am(z)B(z)efm+2(z) −Am(z)Q1(z)e
fm+1(z) = p21(z)

m
∑

r=0

Br(z)e
fr(z), (3.26)
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where Br(z) = Cr
mQm−r

2 (z + η)Cr(z).

If A(z) ≡ 0, then by Lemma 2.2 we have Cr
mQm−r

2 (z + η)Cr(z) ≡ 0 for r = 0, . . . ,m. If

B(z) ≡ 0, then by Lemma 2.2, we also have for some r, Cr
mQm−r

2 (z + η)Cr(z) ≡ 0. Thus, we

have Q2(z) ≡ 0 or C(z) ≡ 0. This is a contradiction. If A(z) 6≡ 0, B(z) 6≡ 0, then by Lemma 2.6,

we still have Am(z)B(z) ≡ 0 or Am(z)Q1(z) ≡ 0. Clearly, it is impossible.

Subcase 3.3.2. m = 2.

Rewrite Eq. (3.25) as

A2(z)B(z)e2α2(z+η)+2α1(z) −A2(z)Q1(z)e
2α2(z+η)

= 2p21(z)Q2(z + η)C(z)e2α1(z+η) + p21(z)C
2(z)e4α1(z+η) + p21(z)Q

2
2(z + η). (3.27)

We set α1(z) = azn + · · · , α2(z) = bzn + · · · , a 6= 0, b 6= 0, and f1(z) = 2α2(z + η) + 2α1(z),

f2(z) = 2α2(z + η), f3(z) = 2α1(z + η), f4(z) = 4α1(z + η), f5(z) = 0.

If a 6= −b, a 6= b, by Lemma 2.2, we get p21(z)Q
2
2(z + η) ≡ 0. It is a contradiction because

p1(z), Q2(z + η) are non-zero polynomials.

If a = −b, we rewrite Eq. (3.27) as

A2(z)B(z)eα3(z) −A2(z)Q1(z)e
2α2(z+η)

= 2p21(z)Q2(z + η)C(z)e2α1(z+η) + p21(z)C
2(z)e4α1(z+η) + p21(z)Q

2
2(z + η), (3.28)

where α3(z) = 2α2(z + η) + 2α1(z), and deg(α3(z)) < deg(α1(z)). By Lemma 2.2, we get

Q2
2(z + η) ≡ 0, which contradicts that Q2(z + η) is a non-zero polynomial.

If a = b, we rewrite Eq. (3.27) as

−A2(z)Q1(z)e
2α2(z+η) = (2p21(z)Q2(z + η)C(z) +A2(z)Q1(z)e

2α2(z+η)−2α1(z+η))e2α1(z+η)+

p21(z)C
2(z)e4α1(z+η) + p21(z)Q

2
2(z + η). (3.29)

By Lemma 2.2, we get p21(z)C
2(z) ≡ 0, which is a contradiction.

Case 4. n = m = 2.

Clearly, from (1.7), we have
{

(f(z)f ′(z))
2
+ p21(z)g

2(z + η) = Q1(z)

(g(z)g′(z))
2
+ p22(z)f

2(z + η) = Q2(z).
(3.30)

Then it follows from Lemma 2.3 that






















f(z)f ′(z) + ip1(z)g(z + η) = M1(z)e
h1(z),

f(z)f ′(z)− ip1(z)g(z + η) = M2(z)e
−h1(z),

g(z)g′(z) + ip2(z)f(z + η) = M3(z)e
h2(z),

g(z)g′(z)− ip2(z)f(z + η) = M4(z)e
−h2(z),

(3.31)

where M1(z)M2(z) = Q1(z), M3(z)M4(z) = Q2(z), and M1(z), M2(z), M3(z), M4(z), h1(z),

h2(z) are nonzero polynomials.

From (3.31), we get

g(z + η) =
M1(z)e

h1(z) −M2(z)e
−h1(z)

2ip1(z)
, (3.32)
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f(z)f ′(z) =
M1(z)e

h1(z) +M2(z)e
−h1(z)

2
, (3.33)

f(z + η) =
M3(z)e

h2(z) −M4(z)e
−h2(z)

2ip2(z)
, (3.34)

g(z)g′(z + η) =
M3(z)e

h2(z) +M4(z)e
−h2(z)

2
. (3.35)

By (3.34), we get f(z) = M3(z−η)eh2(z−η)
−M4(z−η)e−h2(z−η)

2ip2(z−η) .

We rewrite f(z) as

f(z) = M7(z)e
h2(z−η) +M8(z)e

−h2(z−η), (3.36)

where M7(z) =
M3(z−η)
2ip2(z−η) , M8(z) =

M4(z−η)
2ip2(z−η) .

Differentiating (3.36), we get

f ′(z) = M5(z)e
h2(z−η) +M6(z)e

−h2(z−η), (3.37)

where

M5(z) =
M ′

3(z − η)p2(z) +M3(z − η)p2(z − η)h′

2(z − η)− p′2(z − η)M3(z − η)

2ip22(z − η)

and

M6(z) =
M4(z − η)h′

2(z − η)p2(z − η)−M ′

4(z − η)p2(z − η) +M4(z − η)p′2(z − η)

2ip22(z − η)
.

Since M3(z), q(z), h2(z − η) are nonzero polynomials, we have deg(M3(z − η)p2(z− η)h′

2(z −

η)) > deg(M ′

3(z − η)p2(z)) and deg(M3(z − η)p2(z − η)h′

2(z − η)) > deg(p′2(z − η)M3(z − η)).

Clearly, M5(z) 6≡ 0. Similarly, we have M6(z) 6≡ 0.

Combining (3.36) and (3.37), we get

f(z)f ′(z) = M5(z)M7(z)e
2h2(z−η) +M6(z)M8(z)e

−2h2(z−η) +M9(z), (3.38)

where M9(z) = M5(z)M8(z) +M6(z)M7(z).

From (3.33) and (3.38), we have

M5(z)M7(z)e
2h2(z−η) +M6(z)M8(z)e

−2h2(z−η) +M9(z) =
M1(z)e

h1(z) +M2(z)e
−h1(z)

2
. (3.39)

Now let f1(z) = 2h2(z − η), f2(z) = −2h2(z − η), f3(z) = h1(z), f4(z) = −h1(z), f5(z) = 0.

Then Eq. (3.39) can be rewritten as

M5(z)M7(z)e
f1(z) +M6(z)M8(z)e

f2(z) +M9(z) =
M1(z)e

f3(z) +M2(z)e
f4(z)

2
. (3.40)

Now we need to treat two cases:

Subcase 4.1. deg(h1(z)) > deg(h2(z)) or deg(h1(z)) < deg(h2(z)). By Lemma 2.2, we get

M5(z)M7(z) ≡ 0, which is a contradiction.

Subcase 4.2. deg(h1(z)) = deg(h2(z)). We set h2(z) = azn + · · · , h1(z) = bzn + · · · , a 6= 0,

b 6= 0.

If 2a 6= b, 2a 6= −b, then by Lemma 2.2, we getM5(z)M7(z) ≡ 0. Clearly, it is a contradiction.
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If 2a = b or 2a = −b, by Lemma 2.2, we get M9(z) ≡ 0, and hence M5(z)M8(z) +

M6(z)M7(z) ≡ 0.

Thus, (M ′

3p2 + M3p2h
′

2 − p′2M3)(−
M4

p2
) = (M4h

′

2p2 − M ′

4p2 + M4p
′

2)(
M3

p2
). It follows that

2M3M4h
′

2 = M3M
′

4 −M ′

3M4, which is impossible. The proof of Theorem 1.5 is completed. 2
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