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Abstract This article explores the existence results and finite time stability of nonlinear
Riemann-Liouville fractional oscillatory differential equations of order 1 < p < 2 with pure
delay. The approaches we adopted to explore the existence results are fixed point theorems.
What’s more, based on some important inequalities, we explore the finite time stability of the
system. In the end, the rationality of our conclusion is verified by a case.
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1. Introduction

Fractional calculus, an important branch of mathematics, has a long historical standing
which can depict some phenomena in natural science and engineering applications. For example,
in control systems, biological tissues, statistical and stochastic processes, viscoelasticity and
other fields. Oscillatory equation, also known as wave equation, is used to describe various
wave phenomena in nature. Fractional oscillatory differential equation is the unity of fractional
differential equation and oscillatory equation. It is worth reiterating that this kind of equation
is of great significance for the study of different fields. We can see the previous literature [1-11].

In particular, the study of the stability is of great significance, from the control system to
the social system, all of which are affected to a greater or lesser extent. This article explores
the finite time stability (FTS) of nonlinear Riemann-Liouville fractional differential system. If
for the initial conditions of a given range, the state will not exceed a predetermined bound in a
limited time period. We can consult the previous works [12-21].

In recent past, Khusainov and Shuklin [22] proposed the delayed exponential function to
explore a delay differential equation of first order. This function solved some delay differential
equations encountered in dealing with practical problems. This idea has aroused the attention
of mathematicians and engineers. For example, Mahmudov [23] adopted iterative method to

construct basic solution. On the basis of the basic solution, the explicit solutions of Caputo
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type fractional differential equations with delay were given. Li and Wang [24] constructed a
new delayed matrix function, and applied the method of constant variation to get the explicit
solutions of Riemann-Liouville type fractional delay differential equations.

In the light of the delayed exponential function, Pan and Fan [25] made a further promotion.

The fractional oscillatory differential system they explored is as follows

DY LX) = QT (v — <) + f(v), ve(0,T].¢>0,
T(v) = p(v), —c<v <0, (1.1)
T (~c) =a, "D IT(~ct) =D,

where RD{<+ and JQ_Zﬁ denote Riemann-Liouville fractional derivative and intergal, respectively.
feC(0,T],R™), T =I¢ < oo, | is a determinate number and 2 € R™*" is a constant matrix.
Two new fundamental solutions Pg(v) and Hj(v) were defined. In order to get the accurate
solution of system (1.1), they adopted the method of constant variation.

According to [25], the accurate solution of system (1.1) can be written in the following

structure
0

T(v) = Py (v)b+H; (v)at PZ(V—c—C)(RDQ<+90)(C)dC+/OD Pov —s=Q)f(Q)d¢, vel0,T].

—<
Different from other articles, they made some requirements for functions ¢ and f, and introduced
two spaces @ and ¥ in [25].

With the development of science and technology, almost all fields of natural science involve

nonlinear problems. Therefore, we explore the nonlinear fractional oscillatory system as below

RD?  T(v) = 02T (v —<)+ f(r,T(v), ve(0,T],s>0,
T(v) = p(v), —s<v <0, (1.2)
T (—T) =a, DY (—¢F) =h.
Existence and FTS results for solutions of system (1.2) are given by using the two fundamental
solutions, fixed point theorems and estimations of some important inequalities including Holder
inequality and Gronwall inequality.
The rest of this article is as follows: Section 2 includes some preliminary knowledge. Section
3 contains the existence of solution of system (1.2). We apply two fixed point theorems. Section 4
presents some sufficient conditions to ensure the FTS of system (1.2). In Section 5, the rationality

of the results is proved by an instance.

2. Preliminaries

For the convenience of narration, in this section, two new delayed Mittag-Leffler type matrix

functions and other preparatory knowledge are given.

Definition 2.1 ([25]) The p order Riemann-Liouville derivative of function w : [—¢, +00) — R"

can be defined as follows

2 v
"2 wlv) = gy | 0= OO v e (s,



Nonlinear Riemann-Liouville fractional delay differential equations 227

where ¢ € (1,2) and T'(-) expresses the Gamma function.

Here, two basic solutions which we use are introduced.

Definition 2.2 ([25]) The delayed matrix function Py(v) : R — R"*" is characterized by

0, —o0 < v < —g,
(v4s)e! -
I(_E(fgfl’ . s<r<O,
Po(v) =1 1"+ 1 + 2%y . O<v<s,
()P L uAel | o (o)
IRy + g + P g
(k+1)e—1

k (v (k—1)5)
N (GO

where 0 and I stand for zero and identity matrices, respectively.

(k—1)¢ <v <k keN,

Definition 2.3 ([25]) The delayed matrix function Hj(v) : R — R"*" is characterized by

0, —o0o < v < —g,
I(?nggl)Qv - <V S 07
H(v) = TWH 2y e 0<v<
o) = T(e—1) T(2o-1)’ =<,

(l/+ ~)972 V2g—2 (l/— ‘)3972
oy + Oty T @ raey ot
_Qk (V_(k_1)<)<k+1)e—2

T DD

where 6 and I stand for zero and identity matrices, respectively.

(k=1)s <v <k keN,

Remark 2.4 Functions Pg(r) and Hj(v) are continuous on R and (—¢, 00), respectively. We
find that the right limit of function #(v) at the point v = —¢ does not exist. As a result, the

point v = —¢ is called a discontinuity of second kind for the function #j (v).

Theorem 2.5 Suppose X is a complete metric space and = : X — X is a contractive mapping.

Then = has a precisely one fixed point.

Theorem 2.6 Suppose X is a Banach space, operator = : X — X is a continuous compact
mapping, and there is a nonempty bounded convex closed set O C X which makes ZO C O

established. Then = has at least one fixed point w € O, that is, Zw = w.

Definition 2.7 ([26]) The nonhomogeneous system (1.2) is finite time stable concerning
{0,J,¢,0,m}, 0 < n, iff ||¢|]| < 0, |Jal| < ¢ and ||b|| < J, signify the solution Y meeting
7] = sup,es [T@)[| <n, where J = [0, T].

Lemma 2.8 ([27]) Suppose x(v) is nonnegative and locally integrable on [0,T) (T < 4o00),
and g(v), a(v) are nonnegative, nondecreasing continuous functions defined on [0, T), g(v) < M,
o > 0 with

o) < alv) +90) [ (0= QP a(0)ac
0
on this interval. Then,
z(v) < a(V)E,(9(V)T'(0)v?), 0<v<T,

where the function E,(-) is defined as E,(¢) = ZZOZO 1“(#:-1)'
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In order to study the existence and finite time stability results, the following lemmas are

needed.

Lemma 2.9 Forv e ((k—1)s,ks], k € Nt and 1 < p < 2, we obtain
@) IPsW)I < (v + )27 B o (1201 (v + 6)2).
(i) [H (W) < (v + )2 Ep o1 ([192]l(v +)?).

Here, the function E) ,(-) is defined as Ex ,(¢) = Z;X’O m, where A, 1 > 0 and ¢ € R.

Proof For v € ((k — 1)s,kg], k € NT, on the basis of Definitions 2.2 and 2.3, we obtain

(1)

1Py
V+§)g—1 V29—1 v—¢ 30—1 v—(k—=1 g)(k—i-l)g—l
< bl 1P =)
0) (e+0) I'(20+0) I'(ke + o)
v+g)e! V+g v +)ie! v+ ¢)(ktDe-1
S[% 102 ||¥ 2| #+...+”Q”k%
0) I'(o+ o) I'(20+0) I'(ke + o)
< (v +6)2 T B o120l (v + <))
(ii)
[#H W)l
(v+)e? vie—? 2 (v —¢)%e? k(v = (k= 1)g)(ktDe—2
< +0 F QP S e 12
[F(Q—l) 14205 I'(20-1) I« ['(Bo—1) I L((k+1)o—1)
v+4q)e? v 4g)%e? v +g)te? v 4g)lktbe-2
< (WA D ot D g T
Ilo—1) I'(20-1) I'(Bo—1) I'((k+1)o—1)
< (v +6) 2By 1 (12l(v +9)9). O
Remark 2.10 According to D’Alembert’s test, we obtain
Al .
i TG _ o PGA+ ) ¢
] — 00 ¢ ] — 00 ]
j— N epeaT j—oo T(JA+ p+ N)
— lim LA+ )¢
j=oo (JA+pu—1+X) - (GA+ )TN+ p)
= lim — < =0<1.

j=oo (JA+ =14 A) - (JA+ p)

So the infinite series Z;io F(Jg\ii‘ru) < 00 holds, which means the existence of Ej ,({). On the
other hand, it is obvious that the function is a power series, so the function E) ,(¢) is continuous

on its convergence domain R. For more details, we can see [1].

Lemma 2.11 ([25]) For v € ((k — 1), ks], k € N*, we obtain

— (k= 1)g)(k+De
P((k+1)o+1)

. v
[ 1P3 = = 0llac <l

Z ||9|| —(—2))? — (v—(j — 1)5)79] .
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Lemma 2.12 ([25]) For v € ((k — 1), ks], k € N*, we obtain
N ey
Py(v—¢—¢)lld¢ < v — jc)dthe,
[ T DR SRS

7=0

Here, we give another method to estimate this integral.
Lemma 2.13 For v € ((k— 1)s,ks], k € Nt we obtain
| 1P3 == Q@ < Bugll2l?) [ (v =07 Ia(OllaG, g € C0. TLRY).

Proof Let v € ((k — 1)s,ks] and k € N*, in the light of Definition 2.2, we obtain
|13 =<~ st
0

v—(k—1)g (l/ o C)gfl (l/ —c— 4)2971 o
</0 [ I'(o) el T(o+ o) T

ko1 (v = (k= 1)g = Qke! v (= (et
L e (SIS A
kTS OO P11l (o kY SR T T PO

I'(e+0) I((k—=2)o+ o)

SNk YPGB Y-t
/[ (o I Me(Qlde + / ro ot

(v =2 N s
< [ olac+ [ 1 e+ +

—=Ds (= (k= 1)s — ¢)ke
/O popr Ve =" piac

L(ko)
< [ e+ [ 1S o +
/OV_M)( |Q|k‘1%llg(c>|dc
< OV § F('J'.f—fg)(v = QU lg(¢)]d¢

< B, ,(|12]v) / (v — Q2 g(Q)dc.

This proof is completed. O

3. Existence results

In this paper, the finite time stability is studied by explicit solution, so the existence of
the solution is the prerequisite for this study. In this section, Banach fixed point theorem and
Schauder fixed point theorem are used to prove it. In the first place, we introduce a space
& = {p € C((—s,0],R") : Jif(p € AC?((—¢,0],R™)}. Tt is an absolutely continuous function
after taking the first derivative of JQ_tﬁcp
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Definition 3.1 Function Y € C((—s, T],R"™) is referred to as the solution of system (1.2) if it

can be represented by the subsequent form:

0
Ps(v)b+Hy(v)a+ [Z Py(v — < — ("D ) (O)d¢+
T(V) = fOVP;(V—§—C)f(€,T(C))dC, ve [OaT]a
@(V)v Ve (*gaO]'
Here, we introduce some assumptions:
[E1] f:]0,T] x R® — R™ is a continuous function. There exists K > 0 such that ||f(v,y) —
fw,2)l < Klly— 2|, v €[0,T] and y, 2 € R".
-1 2|7 .\ (5
(22 p = K Zios rgimgem (7 =499 < 1
[E5] D2 ¢ € C((=<,0],R") and M =sup_ ¢, [[("D2 ) (O] < oo
[E4] f:]0,T] x R™ — R™ is a continuous function. There exists L > 0 such that

£, D) < LY, ¢ €[0,T] and T € R".

In the next, we demonstrate the existence results through fixed point theorems. For conve-

nience of representation, we define

P1(v) = (v +6) 7 By o120 (v +9)9),
Ya(v) = (v + )¢ Ep o (12]| (v + )9,

k j—1
_ ”Q”] . jo . jo (1/ _ (k _ 1)§)(k+1)g
V() = 2 T(Go+1) (v — (G —2)6)"¢ — (v — ( — 1)s)e] + |2 I((k+1e+1) 7
k—1 j
QﬁZ(V) = 1421 (v — jg)(jJrl)Q,

TG+ 1e+1)

where 1 < p <2, v € ((k—1)s,k¢] and k € {1,2,...,1}.

Remark 3.2 According to the continuity of function F) ,(¢) in Remark 2.10, it can be known
that these three composite functions E, ,(||2[|(v + ¢)?), Eq o—1(||2]|(v +¢)?) and E, ,(||£2||v?)
are continuous for v € R, and the composite function 1 (v) = (v + )2 2E, ,_1([|2||(v + 5)?) is

continuous for v € [0, T]. Clearly, these four continuous functions are bounded on [0, T].

Remark 3.3 It is easy to prove that v () is monotonically increasing function by the method
of differentiation. Through the same way, for fixed k, the functions 1&(v) and 1%(v) are mono-
tonically increasing functions when v € ((k — 1)¢, k], k € {1,2,...,1}. On the other hand, by
calculating we find that 5~ ((k—1)v) = ¢&((k—1)v), 5 ((k—1)v) = ¥k((k—1)v). Therefore,
Pi(v) < YLU(T), ¥i(v) < YL(T), where v € ((k — 1)s, ks], k € {1,2,...,1}.

Theorem 3.4 Let ¢ € ¢. Assume that [E1] and [Es] are met. System (1.2) has a single solution
T.

Proof Define an operator = : C([0, T|,R"™) — C([0, T],R™) by

0 v
ST(W) = Pswb+ Hsa+ [ Psv—¢— (D, @)(Q)dC + / PS(v — ¢ — O (¢ 1)

-S
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Obviously, = is well defined due to [E7] and Remark 2.4. Then, we shall verify that Z is a
contractive mapping.
In terms of Lemma 2.12 and for z(-),y(-) € C([0, T],R™), we obtain

IZ2(v) — Zy(v)|| < K/O [Ps(v —<s = Qlld¢llz -yl

k—1 j
< KZ ‘”L”](V — jo)the|z —y|
TG+ e+1)

Z NP jeee—y)
I'((+1)e+1) ’

which implies that ||Zz — Zy|| < p|lx — y||. On the basis of assumption [Es], E is a contractive

mapping. We can apply Theorem 2.5 to deal with the rest proof. O

Theorem 3.5 Let o € ®. Assume that [E3], [E4] and the formula Ly} (T) < 1 hold. System

(1.2) has at least one solution Y.

Proof Define an operator = : C([0, T],R™) — C([0, T],R") by
0

ET0) =Py + Hywla+ [ Py == QDL @) O+ [ Pyl =< OFCTIONG.
e 0
Obviously, if the mapping = has a fixed point T, T is a solution of system (1.2) where

) { T(w), velo.Tl,
@(V)v Ve (790]'

Next, we adopt Theorem 2.6.
(i) =:C([0,T],R™) — C([0, T],R™) is a continuous mapping. Assume that lim, . T, =T,
T, € C([0,T],R™) and Y € C(|0, T],R™). For any v € [0, T], we obtain

ve[0,T]

IZY, — ZT| < max H/ P;(y—g—C)f(g,Tn(C))dC*/O P;(vaC)f((,T(C))dCH
< max || [ P30« QL€ 16 - s TG
According to the Lemma 2.13, we obtain

10, = 200 < o | [ P30 < = O 16 0000 = 6T |

ve(0,T]
< max E, o([142][v?) /O (v = Q¢ IF (G Ta() = F(C T dC
According to Lebesgue’s dominated convergence theorem, we obtain |7, —=7T| — 0 asn — oc.
Namely, the mapping = is a continuous mapping.
(ii) Denote C, = {Y(v) € R" : ||T(v)|| < r} and O, = {Y € C([0,T],R") : T(v) € C,,v €
[0, T]}. Next we prove there exists r > 0, which makes =0, C O,., where O, is a bounded closed
convex subset of C'([0, T],R™).
For any T € O,, r is sufficiently large, v € ((k — 1), k¢] and k € {1,2,...,1}, on the basis of



232 Rengie PAN, Xiaocheng HU and Zhenbin FAN

Lemmas 2.9, 2.11, 2.12 and the assumption [Ey], we obtain
0
[T @) <[P ()bl + [ Hg(v)al +/ 1P =< = (D2 L) (Q)lld¢+
-

/prfv 6T

<Y1(v)[[bl| + ¢2(v)llall + My5w) + LIT(O)¢5(1)
<Yu(T)|[b|| + M5 (T) + Lryy(T) + sup Yo (v)|all,
rve|0,

which means

IZ7] = sup IET@)] < 1 (T[]l + My5(T) + Lrgi(T) + Sup_ Pa(v)llaf-
vE. vel0,

Since the formula Ly} (T) < 1 holds, there exists a sufficiently large 7, we obtain |ZY|| < r. In
other words, =0, C O,..

(iii) =0, is a relative compact set in C([0, T|,R™).

Firstly, for any T € O, that is, Z0, is a uniformly bounded set in C([0, T], R"™).

Next, we prove Z0, is an equicontinuous set in C([0, T|,R™). In fact, VO <14 < vo < T and
T € O,, we obtain

[(E1)02) = (FT)0)] =[P502)b+ Him)a+ [ Py(vs — < — ("D )G+
| P = = Q6 TONE - Py)b - Hm)a-
/i Ps(v1 —s — (D2 L) (¢)d¢ — /OV1 Py —< =) f(CT(C)d(C]|
<I(Py(v2) — P(un))b + (Hy(v2) — Hy(1n))at
/ i(P;‘(ug — = Q) =P — < — )DL p)(()AC+

V2

) Py(v2 <C)f(<ﬂf(C))dC/OV1 Povr — ¢ = Qf(¢T(Q))dC]
<[(Pg(vz) = Pg())bl + [|(Hy(ve) — Hy(mn))all+

| / (Pyls =5 =) = Pl =5 = O)("DE L) (Qc |+
H P — s — Of( C,T(C))dc—/yl Pyl = = OF(C T
0
Due to 11 < v5, one obtains
| [ Pstn - - s 106 - [ P30 - - 07t 1O
= H/Oyl<7’3<y2—<—<> — Pyl =< =) Y d<+/ Plvs = = Q¢ T

<| /0 (Pilvs =< =) = P31 =5 = XN + 52 =< = QS (€. T(O)d|
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<ir [P == = o — s - Olldc+ | [ Psa =5 - 06 X0

In the light of Remark 2.4, we get that the function Pg(v) is uniformly continuous in [—¢,T],
and thus, one acquires || Pg(r2 —¢ — () — Py(v1 — ¢ — ()| — 0 as v2 — v1. Accordingly, we can
make a conclusion that [[(EY)(v2) — (EY) ()|l = 0 as va — vy for all T € O,, and Z0, is
an equicontinuous set in C([0, T|,R™). According to Arzela-Ascoli theorem, ZO, is a relative
compact set in C([0, T],R™).

In conclusion, on the basis of Theorem 2.6, = has at least one fixed point Y. That is to say,

T is a solution of system (1.2). O

4. FTS results

Based on the explicit solution, we will further study the finite time stability. In this part, we
assume that the solution of system (1.2) exists and meets the conditions in Section 3. What’s
more, Holder inequality and Gronwall inequality are main tools to study FTS problems.

[E5] There exists a function w(-) € C([0, T],R™) such that || f(¢,T)]| < w(¢), for ¢ € [0,T]
and T € R™.

[Eg] There exists a ¢(-) € LI([0, T],R™),
¢ €10, T] and Y € R™.

% =1 —, p > 1 such that [|f({,T)|| < ¥(C) for

Theorem 4.1 Assume that [Es] and [Es] are met. System (1.2) is FTS regarding {0, J,,d,n}

in the event of

51 (T) + sup Sha(v) + Mp(T) + [Jw]| vy (T) <.

Proof In terms of Lemmas 2.9, 2.11 and 2.12, for v € ((k — 1)¢,k¢] and k € {1,2,...,1}, we

have

IC0) ] <IPS @bl + [Hs(w)all + / IPS — s — ("D )(C)ldC+
/ IPS( — s — O F(C Q)

<O Pe () + olIH5 ()| + M IIPZ(V*<*<)Hd<+

/ IPSw — s — O)llw(¢)dc

<& (T) + 8255%( V) + My5(T) + [|w]] i (T)
which implies
17| = sup [T < 09 (T) + 8255%(”) + Mg (T) + [Jwll i (T) <.

This proof is completed. O

Theorem 4.2 Assume that [Es] and [Eg] are met. System (1.2) is FTS in relation to {0, J, <, d, n}
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in the event of
l P . io—1+1
QYT -G —1)) %
SUA(T) 4 sup_ dun(v) + Mu(T) + ], SO T =19
ve[0,T] =1 (i0) (pio—p+1)
Proof Here, we use mathematical induction to prove the results.

(1) When k =1, v € (0,¢], and on the basis of Lemmas 2.9 and 2.11, we have
@)l

0
< I\PC(V)b||+|\H§(V)aII+[ 1P5(v =< = (DY L) ()l dC+

) <.

S =

| 1P =~ ¢ T

g|%bn+m R e B e B
20—1 1
R e e S P = ())) dc)P
sup Siba(v 0oy MDA Wl
§5w1(§)+ye[0§>§]5¢2( )HF(QH)[(HQ ) ]+F(2g+ 1) L) (po-p+1)»

1 el . io—1++
<5 5 M ST (o= G = D)™ T
< ¢1(§) + Dil[lor’)g] ’(ﬂg(l/) + ¢3(§) + ||wHL ;( F(zg) (pZQ —p+ ]_)5

. o . jo—1+ 2L
! 211 (T = (i = Do+
< 5y (T) + VZEFT] 0ha (V) + Mg (T) + lequ ;( T(io) (pio—p+1)

S =

which implies

! i1 (T _ (i — ig—1+2
sup [T < 00 (T)+ sup o9+ Myb(T)+ sy S M2 T = (= 1)

. ) <.
v€[0,5] velo,T] i=1 I'(io) (pio—p+ 1)%

(2) Similarly, we can prove other cases. In fact, let (k — 1) < v < k¢, k € {2,3,...,1}.
According to Lemmas 2.9 and 2.11, one can show

@)l

0
< ||7’<(V)b||+H’H‘(V)all+/_‘H7’;‘(V—<—C)(RD5<+90)(C)IIdC+

/||7><uf<f 6T

< 5y (ko) + o (v +M/ +|\QH(V_§_O29_1+ +
g Su e
! velord T2 . T(o+ o)

o1 (V= (k=1)g = ke ! k(v — ks — C)(k+1)g_1
e L((k=1)o+ o) ]dC+M/_< ”Q” I'(ko+ o) e+

Y=g 1 [7TTDS (= (k= 1) = Qe
| B —ac e [ (0

< opi(ks) + sup  Ouo(v) + Mepls(ke)+
ve0,ks]
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||¢|Lq(/oy %d{)% el L (/O (v - (k@(lﬁ;))p()”k""’ ac)’
k

i— . io—1+L
< 5y (k 5 MoKk , 12| 1(|<§—(z—1)§)91 »
< 091 ( <)+VES[1£<] Pa(v) + Mps(ke) + |9 ;:1( Tl ER——

! i1 . io—141
<5y (T 5 Mok (T ) 12~ (T = (= 1)) v
< o ( )+V21[101,)T] Yo(v) + Mpz(T) + (||, ;:1( T(io) pio—p+ 1) )

)

o=

which implies
sup  [[T(w)[| < 0¢1(T) + sup dtpa(v)+
ve[(k—1)s,ks] vel0,T]
M) + o, YA O (= D
3 La . T'(io) (pio—p + 1)%

In a word, when v € [0, T] and T = I, we could make a conclusion

) <.

Y]l = sup [[Y@)]| < dv1(T)+ sup ¢a(v)+
ve[0,T] ve(0,T]

! -1 (T _ (5 — io—1+3
Mys(T) + 1l 1 Z(|1{2(|i9) . (pig ;)jr)l)

) <.

S =

The proof is completed. O

Theorem 4.3 Assume that [Es] and [Es] are met. System (1.2) is FTS in relation to {0, J, <, d,n}
in the event of

w||.T?
un(T) -+ supdualo) + 2o + LU=, T < .
ve
Proof By using the Lemmas 2.9, 2.11 and 2.13, for v € ((k — 1), k¢] and k € {1,2,...,1}, we

have
0

@)l SIIPE(V)bIHHHZ(V)aIH/ IP5 (v =< = O)(D? 1 9)(C)]ldC+

/ 1P — < - OFC O

0
SO Pe ()l + ollHW)II + M [ [[Pa(v =< = QlldC+

—<

/ "= 0P B, (122 (Q)dC

w||.T¢
<00 (T) + sup () + MUY(T) + Fele™ 5 regTe),
which implies
w|.T?
1 = sup [ V(0] < 86:(T) + sup () + MUA(T) + elle™ &2 gmey <.

veJ
The proof is completed. O

Theorem 4.4 Assume that [Es] and [E4] are met. System (1.2) is FTS in relation to {0, J, <, d,n}
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in the event of

(0u(T) + sup 9a(v) + My5(T)) By(LT(0) Eo.o(1|£2] T2)T?) <

Proof In accordance with the Lemmas 2.8, 2.9, 2.11 and 2.13, for v € ((k — 1), k¢] and k €
{1,2,...,1}, we have

0
X <IP5wb] + [#5w)al + [ P50 =5 = OCDE L)) ldC+
/O IPSw - — OS]l
<(501(v) + () + M) + L/OV 1P5 — < — OIT©)]d¢

<(001(v) + 09 (v) + Mu5(v) + LE, (|| 2]|v7) /OV(V = Q)HIT(Q)d¢

<(891 () + 62 (v) + My§(v)) By (LT (0) Bg,o(|92||v2)1?)
< (91 (T) + sup 0o (v) + Mus(T)) Ep(LL(0) B o([|€2] T#)TE),
which implies
7] = sup IT@)I < (6¢1(T) + sup (V) + My5(T))Ey (LT (0) B, o (12 T)TE) <

The proof is completed. O

5. Example

The rationality of the results is proved by an instance. In order to get more accurate results,
we calculate the data in this article to four decimal places.

Example 5.1 Set p=1.6,¢=0.3,l=3and T = 0.9. Consider

EDLS . Y(v) = QY (v — 0.3) + f(r, Y({)), 0<v<0.9,
1/—|—0 3)
pv) = < (w103)* ) ~03<v <0, (5.1)
Jo2 T (—0. 3+ 0, fD%5..T(-03%")=b=0,
where T(v) = (11)), 2 = (%3 &) and £, () = (Ve )-
T[T ()]

On the basis of Definition 3.1 and v € [0,0.9], the solution to (5.1) could be displayed as
follows:

0

Y(v) =Pla(w)b+Hid(v)a+ Pl — 0.3 — (DL 5 9)(Q)dCH+
—0.3

[Ty
/OP (v—0.3— c( 1|+}j<<>>dg,

1+[T2(0)]
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where
0 0 3.36 (C+03)04B[3 04]
PYe(v—03-)(FDLE . d¢ = Pa(w—03-¢) | "0 ’
o 16 (v O("DZg.3+9)(O)d¢ Cos 16 (v Q) 1"%093) (¢ +0.3)-4B[4,0.4]

When we estimate the norm of Y(v), we can consider it as a linear problem because of

functions lJlflly(l”()J)‘ <1 and 1<|£J|%y(2’/()l/‘)‘ < 1 (see Figure 1).

0.7

0.6

1 1 1 1 1
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
v

Figure 1 The norm of T

Obviously, ||f(v,T) — f(v,2)|| < (V® +V3)||T — 2| for Y,z € R™ and || f(v, )| < v? + v3,
Vv €10,0.9]. Assume that p =2, ¢ =2, K = L = 1.5390, p = 0.9444 and w(v) = ¢(v) = v>+1>.
After a simple calculation, one obtains ||| = 0.1035, M = 1.8402, ||w|| = 1.5390, E, ,(||£2]|T?)
= 1.4672 and E,(LT(9)E, ,(||£2||T¢)T?) = 2.6306. Furthermore, ¢1(v) < 91(0.9) = 1.9024,
(V) < SUp, 009y o) = 19649, G3(v) < ¥3(0.9) = 0.4064 and 3 (1) < ¥3(0.9) = 0.6136.
Let 6 = 0.12. We obtain Table 1.

Theorem ||y o T < ) 1| n  FTS
4.1 0.1035 1.6 0.9 0.3 0.12 2.1563 2.16  Yes
4.2 0.1035 1.6 0.9 0.3 0.12 1.6414 (Optimal) 1.65 Yes
4.3 0.1035 1.6 0.9 0.3 0.12 2.4043 241  Yes
4.4 0.1035 1.6 0.9 0.3 0.12 3.9147 3.92  Yes

Table 1 FTS results of system (5.1)

Analyses. In the light of Definition 2.7, we ought to determine a relative threshold 7 to ensure
the system is FTS. Table 1 tells us the FTS results of system (5.1) when the fixed time T = 0.9.
From the data in Table 1, we can get a relatively optimum threshold n = 1.65.
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