韩欣利,潘丽君.扰动色谱方程黎曼解的极限-delta激波的行成和转换[J].数学研究及应用,2019,39(1):61~74
扰动色谱方程黎曼解的极限-delta激波的行成和转换
Formation and Transition of Delta Shock in the Limits of Riemann Solutions to the Perturbed Chromatography Equations
投稿时间:2018-01-23  修订日期:2018-07-17
DOI:10.3770/j.issn:2095-2651.2019.01.007
中文关键词:  色谱方程  扰动  delta激波  行成  转换
英文关键词:chromatography equations  perturbation  delta shock  formation  transition
基金项目:国家自然科学青年基金(Grant No.11301264), 中国留学基金委,中国博士后基金 (Grant No.2013M531343), 中央高校基本科研业务费专项资金 (Grant No.NZ2014107), 江苏省高校优秀中青年教师和校长境外研修项目, 江苏省自然科学青年基金 (Grant No.BK20130779).
作者单位
韩欣利 南京邮电大学理学院, 江苏 南京 210023 
潘丽君 南京航空航天大学理学院, 江苏 南京 211106 
摘要点击次数: 73
全文下载次数: 112
中文摘要:
      本文主要讨论扰动色谱方程delta激波解的行成和转换,并讨论上述方程的黎曼问题.当扰动参数趋于零时,通过研究黎曼解的极限,我们可以观察到如下两个重要现象:激波和接触间断重合行成delta激波,一类激波(一个变量含有delta函数).
英文摘要:
      This paper is concerned with the formation and transition of delta shock solutions to the perturbed chromatography equations. We discuss the Riemann problem for the perturbed chromatography equations. By studying the limits of the Riemann solutions as the perturbation parameter tends to zero, we can observe two important phenomena. One is that a shock and a contact discontinuity coincide to form a delta shock. The second is that the transition from one kind of delta shock on which two state variables simultaneously contain the Dirac delta function, to another kind of delta shock on which only one state variable contains the Dirac delta function.
查看全文  查看/发表评论  下载PDF阅读器