曾清平,吴珍莺.关于幂有限秩算子[J].数学研究及应用,2019,39(4):378~382
关于幂有限秩算子
On Power Finite Rank Operators
  
DOI:10.3770/j.issn:2095-2651.2019.04.005
中文关键词:  幂有限秩算子  Drazin可逆  有拓扑一致降指数  黎斯算子
英文关键词:power finite rank operator  Drazin invertible  eventual topological uniform descent  Riesz operator
基金项目:福建省高校杰出青年科研人才培育计划(Grant Nos.闽教科[2015]54号,闽教科[2016]23号),国家自然科学基金(Grant No.11401097),福建省自然科学基金资助(Grant No.2016J05001).
作者单位
曾清平 福建农林大学计算机与信息学院, 福建 福州 350002 
吴珍莺 福建师范大学数学与信息学院, 福建 福州 350117 
摘要点击次数: 440
全文下载次数: 389
中文摘要:
      称$F \in \mathcal{B}(X)$是幂有限秩算子,如果存在某个$n \in \mathbb{N}$使得$F^{n}$是有限秩的.本文将给出幂有限秩算子的若干个有趣刻画.特别地,我们证明了幂有限秩算子类恰好是黎斯算子类和有拓扑一致降指数算子类的交集.
英文摘要:
      An operator $F \in \mathcal{B}(X)$ is called power finite rank if $F^{n}$ is of finite rank for some $n \in \mathbb{N}$. In this note, we provide several interesting characterizations of power finite rank operators. In particular, we show that the class of power finite rank operators is the intersection of the class of Riesz operators and the class of operators with eventual topological uniform descent.
查看全文  查看/发表评论  下载PDF阅读器