高亚楠,张子尧.$\mathbb{Z}_+^k$-作用的方向原像熵[J].数学研究及应用,2020,40(1):33~46
$\mathbb{Z}_+^k$-作用的方向原像熵
Directional Preimage Entropy for $\mathbb{Z}_+^k$-Actions
投稿时间:2018-11-12  修订日期:2019-09-04
DOI:10.3770/j.issn:2095-2651.2020.01.004
中文关键词:  $\mathbb{Z}_+^k$-作用  方向原像熵  无限图
英文关键词:$\mathbb{Z}_{+}^k$-actions  directional preimage entropy  infinite graph
基金项目:
作者单位
高亚楠 河北外国语学院国际语言教育学院, 河北 石家庄 050000 
张子尧 汉江师范学院数学与计算机科学学院, 湖北 十堰 442000 
摘要点击次数: 124
全文下载次数: 150
中文摘要:
      本文提出了$\mathbb{Z}_+^k$-作用的方向原像熵的概念, 得到了关于这些熵之间的一些关系并证明了在拓扑共轭下的各类方向原像熵的不变性. 最后本文给出几类具有零分枝方向原像熵的系统: 由扩张映射生成的$\mathbb{Z} _{+}^k$-作用, 有限图及一类无限图上的 $\mathbb{Z}_{+}^k$-作用.
英文摘要:
      In this paper, a new type of entropy, directional preimage entropy including topological and measure theoretic versions for $\mathbb{Z}_{+}^k$-actions, is introduced. Some of their properties including relationships and the invariance are obtained. Moreover, several systems including $\mathbb{Z}_{+}^k$-actions generated by the expanding maps, $\mathbb{Z}_{+}^k$-actions defined on finite graphs and some infinite graphs with zero directional preimage branch entropy are studied.
查看全文  查看/发表评论  下载PDF阅读器