屠伯埙.除环上矩阵的子矩阵的秩的恒等式与不等式[J].数学研究及应用,1989,9(3):337~345
除环上矩阵的子矩阵的秩的恒等式与不等式
Identities and Inequalities on the Rank for some Submatrices of a Matrix over a Division Ring
投稿时间:1987-09-03  
DOI:10.3770/j.issn:1000-341X.1989.03.005
中文关键词:  
英文关键词:
基金项目:
作者单位
屠伯埙 复旦大学数学系 
摘要点击次数: 1928
全文下载次数: 998
中文摘要:
      本文提供了除环上矩阵的一些子矩阵的秩的若干恒等式与不等式,出现在本文中的这些结果,在处理涉及某些应用方面的复矩阵(作为除环上矩阵的特例)问题以及某些纯数学问题将起重要作用。
英文摘要:
      This paper studies the "substructure" of a matrix over the division ring, and provides an inequality on the rank for the submatrix of the product of two matrices, and an identity on the rank for the submatrix of an inverting matrix. An inequality On the rank of the submatrix of a nonsingular matrix is also given. Some applications of the above conclusions is provided also, one of the interesting results is that the rank of every (n- 1 ) × (n- 1) submatrix of an n × n nonsingular matrix is at least n-2.
查看全文  查看/发表评论  下载PDF阅读器