姚庆六.弱半正三阶三点边值问题的正解[J].数学研究及应用,2010,30(1):173~180
弱半正三阶三点边值问题的正解
Positive Solutions of a Weak Semipositone Third-Order Three-Point Boundary Value Problem
投稿时间:2007-07-12  最后修改时间:2008-03-08
DOI:10.3770/j.issn:1000-341X.2010.01.017
中文关键词:  奇异常微分方程  多点边值问题  正解  存在性  多解性.
英文关键词:singular ordinary differential equation  multi-point boundary value problem  positive solution  existence  multiplicity.
基金项目:国家自然科学基金(Grant No.10871059).
作者单位
姚庆六 南京财经大学应用数学系江苏 南京 210003 
摘要点击次数: 1777
全文下载次数: 1230
中文摘要:
      研究了非线性三阶三点边值问题\[\begin{array}{c}u'''(t)=f(t,u(t)),~a.e.~t\in [0,1],\quad u(0)=u'(\eta)=u''(1)=0\end{array}\]的正解, 其中非线性项 $f(t,u)$ 是一个 Carath\'eodory函数并且存在非负函数 $h\in L^{1}[0,1]$ 使得 $f(t,u)\geq -h(t)$.通过利用“高度函数”的积分和锥上的 Krasnosel'skii 不动点定理证明了$n$ 个正解的存在性.
英文摘要:
      The positive solutions are studied for the nonlinear third-order three-point boundary value problem $$\begin{array}{c}u'''(t)=f(t,u(t)),~\mbox{a.e.}~t\in [0,1],\quad u(0)=u'(\eta)=u''(1)=0,\end{array}$$where the nonlinear term $f(t,u)$ is a Carath\'eodory function and there exists a nonnegative function $h\in L^{1}[0,1]$ such that$f(t,u)\geq -h(t)$. The existence of $n$ positive solutions is proved by considering the integrations of ``height functions'' and applying the Krasnosel'skii fixed point theorem on cone.
查看全文  查看/发表评论  下载PDF阅读器