赵斌.两类广泛递归序列的动力特性[J].数学研究及应用,2010,30(5):929~935
两类广泛递归序列的动力特性
Dynamics of Two Extensive Classes of Recursive Sequences
投稿时间:2008-08-23  最后修改时间:2009-01-05
DOI:10.3770/j.issn:1000-341X.2010.05.022
中文关键词:  递归序列  平衡点  动力特性.
英文关键词:recursive sequence  equilibrium  dynamics.
基金项目:国家自然科学基金(No.10771169).
作者单位
赵斌 西北大学数学系, 陕西 西安 710127; 西北农林科技大学数学系, 陕西 杨凌 712100 
摘要点击次数: 1388
全文下载次数: 978
中文摘要:
      研究了两类广泛递归序列:$$x_{n 1}={c\sum\limits_{j=0}^{k}\sum\limits_{( i_0,i_1,\ldots, i_{2j})\in A_{2j}}x_{n-i_0}x_{n-i_1}\cdots x_{n-i_{2j}} f(x_{n-i_0}, x_{n-i_1}, \ldots, x_{n-i_{2k}})\over c\sum\limits_{j=1}^{k}\sum\limits_{( i_0,i_1,\ldots, i_{2j-1})\in A_{2j-1}}x_{n-i_0}x_{n-i_1}\cdots x_{n-i_{2j-1}} c f(x_{n-i_0}, x_{n-i_1}, \ldots, x_{n-i_{2k}})}$$和$$x_{n 1}={c\sum\limits_{j=1}^{k}\sum\limits_{( i_0, i_1,\ldots, i_{2j-1})\inA_{2j-1}}x_{n-i_0}x_{n-i_1}\cdots x_{n-i_{2j-1}} c f(x_{n-i_0}, x_{n-i_1}, \ldots, x_{n-i_{2k}})\over c\sum\limits_{j=0}^{k}\sum\limits_{( i_0, i_1,\ldots, i_{2j})\in A_{2j}}x_{n-i_0}x_{n-i_1}\cdots x_{n-i_{2j}} f(x_{n-i_0}, x_{n-i_1}, \ldots, x_{n-i_{2k}})}$$的动力特性, 证明了它们的唯一正平衡点$\overline{x} =1$是全局渐近稳定的, 为递归序列理论的研究提供了一种新的途径.
英文摘要:
      We investigate the dynamics of two extensive classes of recursive sequences:$$x_{n 1}={c\sum\limits_{j=0}^{k}\sum\limits_{( i_0,i_1,\ldots, i_{2j})\in A_{2j}}x_{n-i_0}x_{n-i_1}\cdots x_{n-i_{2j}} f(x_{n-i_0}, x_{n-i_1}, \ldots, x_{n-i_{2k}})\over c\sum\limits_{j=1}^{k}\sum\limits_{( i_0,i_1,\ldots, i_{2j-1})\in A_{2j-1}}x_{n-i_0}x_{n-i_1}\cdots x_{n-i_{2j-1}} c f(x_{n-i_0}, x_{n-i_1}, \ldots, x_{n-i_{2k}})},$$ and $$x_{n 1}={c\sum\limits_{j=1}^{k}\sum\limits_{( i_0, i_1,\ldots, i_{2j-1})\in A_{2j-1}}x_{n-i_0}x_{n-i_1}\cdots x_{n-i_{2j-1}} c f(x_{n-i_0}, x_{n-i_1}, \ldots, x_{n-i_{2k}})\over c\sum\limits_{j=0}^{k}\sum\limits_{( i_0, i_1,\ldots, i_{2j})\in A_{2j}}x_{n-i_0}x_{n-i_1}\cdots x_{n-i_{2j}} f(x_{n-i_0}, x_{n-i_1}, \ldots, x_{n-i_{2k}})}.$$ We prove that their unique positive equilibrium $\overline{x} =1$ is globally asymptotically stable. And a new access is presented to study the theory of recursive sequences.
查看全文  查看/发表评论  下载PDF阅读器