董燕,杨卫国.Cayley树上非对称马氏链的强大数定律及渐近均分割性[J].数学研究及应用,2010,30(6):976~984
Cayley树上非对称马氏链的强大数定律及渐近均分割性
Strong Law of Large Numbers and Asymptotic Equipartition Probability for Nonsymmetric Markov Chain Indexed by Cayley Tree
投稿时间:2008-10-27  最后修改时间:2010-01-18
DOI:10.3770/j.issn:1000-341X.2010.06.004
中文关键词:  强大数定律  非对称马氏链  Cayley树  渐近均分割性.
英文关键词:strong law of large numbers  nonsymmetric Markov chain  Cayley tree  asymptotic equipartition property.
基金项目:国家自然科学基金(Grant No.10571076).
作者单位
董燕 上海交通大学数学系, 上海 200240 
杨卫国 江苏大学理学院, 江苏 镇江 212013 
摘要点击次数: 1516
全文下载次数: 1044
中文摘要:
      本文通过构造鞅的方法,研究了Cayley树上非对称马氏链的状态及状态序偶出现频率的强大数定律,从而得到了其几乎处处收敛的渐近均分割性定理,所得结果推广了一个已知结果.
英文摘要:
      In this paper, we study the strong law of large numbers for the frequencies of occurrence of states and ordered couples of states for nonsymmetric Markov chain (NSMC) indexed by Cayley tree with any finite states. The asymptotic equipartition properties with almost everywhere (a.e.) convergence for NSMC indexed by Cayley tree are obtained. This article generalizes a recent result.
查看全文  查看/发表评论  下载PDF阅读器