魏凤英,王守和.一类Lotka-Volterra互惠扩散系统的概周期解和全局稳定性[J].数学研究及应用,2010,30(6):1108~1116
一类Lotka-Volterra互惠扩散系统的概周期解和全局稳定性
Almost Periodic Solution and Global Stability for Cooperative L-V Diffusion System
投稿时间:2008-10-20  修订日期:2009-05-16
DOI:10.3770/j.issn:1000-341X.2010.06.021
中文关键词:  概周期解  全局稳定  互惠  扩散.
英文关键词:almost periodic solution  global stability  cooperative  diffusion.
基金项目:国家自然科学基金(Grant No.1726062),福建省自然科学基金(Grant No.2010J01005),福州大学科技发展基金(Grant No. 2010-XQ-24).
作者单位
魏凤英 福州大学数学与计算机科学学院, 福建 福州 350108 
王守和 福州大学数学与计算机科学学院, 福建 福州 350108 
摘要点击次数: 2254
全文下载次数: 2081
中文摘要:
      本文研究了一类非自治的两种群$n$斑块互惠系统. 在每一个斑块内部有两个种群, 它们之间是Lotka-Volterra互惠的, 而且每一个种群都能在自己斑块的内部和外部独立的扩散, 通过构建一个合适的Liapunov 函数, 我们得到了一些保证系统有惟一一个全局渐近稳定的正概周期解的充分条件.
英文摘要:
      In this paper a nonautonomous two-species $n$-patches system is studied. Within each patch, there are two cooperative species and their dynamics are described by the Lotka-Volterra model. Each species can diffuse independently and discretely between its interpatch and intrapatch. By constructing a suitable Liapunov function, some sufficient conditions are obtained for the existence of a unique globally asymptotically stable positive almost periodic solution.
查看全文  查看/发表评论  下载PDF阅读器