王济荣,曹小红.性质$(\omega)$的注解[J].数学研究及应用,2011,31(1):100~108
性质$(\omega)$的注解
A Note on Property $(\omega)$
投稿时间:2009-08-10  最后修改时间:2010-04-27
DOI:10.3770/j.issn:1000-341X.2011.01.011
中文关键词:  逼近Weyl定理  性质$(\omega)$  Browder算子.
英文关键词:approximate Weyl's theorem  property $(\omega)$  Browder operator.
基金项目:陕西师范大学中央高校基本科研业务费专项基金(Grant No.GK200901015),教育部新世纪优秀人才支持计划资助项目(Grant No.2006),山西省重点学科扶持基金资助项目.
作者单位
王济荣 山西运城学院应用数学系, 山西 运城 044000 
曹小红 陕西师范大学数学与信息科学学院, 陕西 西安 710062 
摘要点击次数: 1431
全文下载次数: 953
中文摘要:
      在本文中, 根据新定义的谱集,我们研究了由Rako$\mathrm{\breve{c}}$evi$\mathrm{\grave{c}}$介绍的Weyl定理的一种变化性质:性质$(\omega)$. 给出了Banach空间上有界线性算子同时满足性质$(\omega)$和逼近Weyl定理的充要条件. 利用所得的结论, 我们研究了$\lambda-$弱$-H(p)$算子的性质$(\omega)$和逼近Weyl定理.
英文摘要:
      In this note we study the property $(\omega)$, a variant of Weyl's theorem introduced by Rako\v{c}evi\`{c}, by means of the new spectrum. We establish for a bounded linear operator defined on a Banach space a necessary and sufficient condition for which both property $(\omega)$ and approximate Weyl's theorem hold. As a consequence of the main result, we study the property $(\omega)$ and approximate Weyl's theorem for a class of operators which we call the $\lambda$-weak-$H(p)$ operators.
查看全文  查看/发表评论  下载PDF阅读器