赵培,李声杰.约束向量优化问题的Fenchel-Lagrange对偶及鞍点[J].数学研究及应用,2011,31(1):157~164
约束向量优化问题的Fenchel-Lagrange对偶及鞍点
Fenchel-Lagrange Duality and Saddle-Points for Constrained Vector Optimization
投稿时间:2009-01-13  最后修改时间:2010-01-26
DOI:10.3770/j.issn:1000-341X.2011.01.018
中文关键词:  向量优化  Fenchel-Lagrange对偶  鞍点  弱有效性.
英文关键词:Vector optimization  Fenchel-Lagrange duality  saddle-points  weak efficiency.
基金项目:国家自然科学基金(Grant No.10871216),重庆大学211工程三期创新人才培养计划建设项目(Grant No.S-0911).
作者单位
赵培 重庆大学数学与统计学院, 重庆 400030 
李声杰 重庆大学数学与统计学院, 重庆 400030 
摘要点击次数: 1595
全文下载次数: 2143
中文摘要:
      本文在弱有效性条件下,运用扰动函数处理约束向量优化问题的Fenchel-Lagrange对偶问题.在稳定性条件下,讨论了原问题的解与对偶问题的解之间的关系.并在相同的条件下,证明了两个鞍点定理.
英文摘要:
      The aim of this paper is to apply a perturbation approach to deal with Fenchel-Lagrange duality based on weak efficiency to a constrained vector optimization problem. Under the stability criterion, some relationships between the solutions of primal problem and the Fenchel-Lagrange duality are discussed. Moreover, under the same condition, two saddle-points theorems are proved.
查看全文  查看/发表评论  下载PDF阅读器