刘自鑫,吕恕,钟守铭,叶茂.离散神经网络指数稳定的增强李亚普诺夫方法[J].数学研究及应用,2011,31(3):479~489
离散神经网络指数稳定的增强李亚普诺夫方法
Augmented Lyapunov Approach to Exponential Stability of Discrete-Time Neural Networks
投稿时间:2009-03-30  最后修改时间:2010-04-26
DOI:10.3770/j.issn:1000-341X.2011.03.013
中文关键词:  离散神经网络  鲁棒指数稳定  时滞依赖准则  时变时滞.
英文关键词:discrete-time neural networks  robust exponential stability  delay-dependent criterion  time-varying delay.
基金项目:贵州省科学技术基金(Grant No.[2010]2139); 教育部新世纪优秀人才计划(Grant No.NCET-06-0811).
作者单位
刘自鑫 贵州财经学院数学与统计学院, 贵州 贵阳 550004 
吕恕 电子科技大学数学科学学院, 四川 成都 611731 
钟守铭 电子科技大学数学科学学院, 四川 成都 611731 
叶茂 电子科技大学计算机科学与工程学院, 四川 成都 611731 
摘要点击次数: 1507
全文下载次数: 1159
中文摘要:
      研究了一类变时滞不定离散神经网络鲁棒指数稳定问题. 结合线性矩阵不等式技术,通过构造一个新的增强李亚普诺夫函数, 得到了新的指数稳定判据. 与最近文献中的结果相比, 新判据的保守性显著降低. 两个数值算例表明了新判据的较弱保守性及有效性.
英文摘要:
      This paper addresses the problem of robust stability for a class of discrete-time neural networks with time-varying delay and parameter uncertainties. By constructing a new augmented Lyapunov-Krasovskii function, some new improved stability criteria are obtained in forms of linear matrix inequality (LMI) technique. Compared with some recent results in the literature, the conservatism of these new criteria is reduced notably. Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
查看全文  查看/发表评论  下载PDF阅读器