杨和.脉冲发展方程初值问题的正解[J].数学研究及应用,2011,31(6):1047~1056
脉冲发展方程初值问题的正解
Positive Solutions for the Initial Value Problems of Impulsive Evolution Equations
投稿时间:2010-01-03  最后修改时间:2011-01-12
DOI:10.3770/j.issn:1000-341X.2011.06.012
中文关键词:  脉冲发展方程  $e$-正mild解  等度连续半群  非紧性测度.
英文关键词:impulsive evolution equation  $e$-positive mild solution  equicontinuous semigroup  Measure of noncompactness.
基金项目:国家自然科学基金(Grant No.10871160),甘肃省自然科学基金(Grant No.0710RJZA103).
作者单位
杨和 西北师范大学数学系, 甘肃 兰州 730070 
摘要点击次数: 1368
全文下载次数: 1197
中文摘要:
      在有序~Banach~空间~$E$~中, 考虑非紧半群的脉冲发展方程初值问题$$\left\{\begin{array}{ll} u'(t) Au(t)=f(t, u(t)), t\in [0, \infty), t\neq t_{k} ,\\[6pt] \triangle u|_{t=t_{k}}=I_{k}(u(t_{k})), k=1, 2, \cdots, \\[6pt] u(0)=x_{0}\end{array}\right.$$$e$-正~mild~解的存在性. 在对脉冲函数不作
英文摘要:
      This paper deals with the existence of $e$-positive mild solutions (see Definition 1) for the initial value problem of impulsive evolution equation with noncompact semigroup $$\left\{\begin{array}{ll} u'(t) Au(t)=f(t,\ u(t)),\ t\in [0,\ \infty),\ t\neq t_{k},\\[6pt] \triangle u|_{t=t_{k}}=I_{k}(u(t_{k})),\ k=1,2,\ldots,\\[6pt] u(0)=x_{0}\end{array}\right.$$ in an ordered Banach space $E$. By using operator semigroup theory and monotonic iterative technique, without any hypothesis on the impulsive functions, an existence result of $e$-positive mild solutions is obtained under weaker measure of noncompactness condition on nonlinearity of $f$. Particularly, an existence result without using measure of noncompaceness condition is presented in ordered and weakly sequentially complete Banach spaces, which is very convenient for application. An example is given to illustrate that our results are more valuable.
查看全文  查看/发表评论  下载PDF阅读器