陈敬敏,陈丽.迭代函数方程$G(x,f(x),\ldots,f^n(x))=F(x)$的$C^1$解[J].数学研究及应用,2012,32(1):119~126
迭代函数方程$G(x,f(x),\ldots,f^n(x))=F(x)$的$C^1$解
$C^1$ Solutions of the Iterative Equation $G(x,f(x),\ldots,f^n(x))=F(x)$
投稿时间:2010-01-31  最后修改时间:2010-05-28
DOI:10.3770/j.issn:2095-2651.2012.01.013
中文关键词:  迭代方程  Schr\"oder 变换  压缩解  首项系数问题.
英文关键词:iterative equation  Schr\"oder transformation  contractive solution  leading coefficient problem.
基金项目:四川大学青年基金 (Grant No.2008123).
作者单位
陈敬敏 四川大学数学学院, 四川 成都 610064 
陈丽 四川大学数学学院, 四川 成都 610064 
摘要点击次数: 1464
全文下载次数: 1233
中文摘要:
      本文在实数范围内研究了迭代函数方程$G(x,f(x),\ldots,f^n(x))=F(x)$, 给出了在$F$的不动点附近的$C^1$解, 将多项式型迭代函数方程中首项系数问题的相关结论推广到更一般的形式.
英文摘要:
      In this paper we consider the iterative equation $G(x,f(x),\ldots,f^n(x))=F(x)$ on ${\mathbb{R}}$, and give the existence of $C^1$ solutions near the fixed point of $F$, which generalize some results on the leading coefficient problem from the form of the polynomial-like iterative equations to the general form.
查看全文  查看/发表评论  下载PDF阅读器