胡卫敏,巴哈尔古丽,蒋达清.一维$P$-Laplace二阶差分系统奇异边值问题正解的存在性[J].数学研究及应用,2013,33(2):189~203
一维$P$-Laplace二阶差分系统奇异边值问题正解的存在性
Existence of Positive Solutions for Singular One-Dimensional $P$-Laplace BVP of the Second-Order Difference Systems
投稿时间:2011-12-15  最后修改时间:2012-10-12
DOI:10.3770/j.issn:2095-2651.2013.02.006
中文关键词:  分数阶微分方程  格林函数  正解  不动点定理  边值问题.
英文关键词:multiple solutions  singular  existence  discrete boundary value problem.
基金项目:新疆普通高校重点培育学科开放课题(Grant No.XJZDXK2011004),国家自然科学基金(Grant No.10971021).
作者单位
胡卫敏 伊犁师范学院数学与统计学院, 新疆 伊宁835000 
巴哈尔古丽 伊犁师范学院数学与统计学院, 新疆 伊宁835000 
蒋达清 东北师范大学数学与统计学院, 吉林 长春 130024 
摘要点击次数: 1785
全文下载次数: 1132
中文摘要:
      应用锥压缩锥拉伸不动点定理和Leray-Schauder 抉择定理研究了一类具有P-Laplace算子的奇异离散边值问题$$\left\{\begin{array}{l}\Delta[\phi (\Delta x(i-1))]+ q_{1}(i)f_{1}(i,x(i),y(i))=0, ~~~i\in \{1,2,...,T\}\\\Delta[\phi (\Delta y(i-1))]+ q_{2}(i)f_{2}(i,x(i),y(i))=0,\\x(0)=x(T+1)=y(0)=y(T+1)=0,\end{array}\right.$$的单一和多重正解的存在性,其中$\phi(s) = |s|^{p-2}s, ~p>1$,非线性项$f_{k}(i,x,y)(k=1,2)$在$(x,y)=(0,0)$具有奇性.
英文摘要:
      In this paper we establish the existence of single and multiple positive solutions to the following singular discrete boundary value problem $$\left\{\begin{array}{l}\Delta[\phi (\Delta x(i-1))]+ q_{1}(i)f_{1}(i,x(i),y(i))=0, ~~i\in \{1,2,\ldots,T\}\\\Delta[\phi (\Delta y(i-1))]+ q_{2}(i)f_{2}(i,x(i),y(i))=0,\\x(0)=x(T+1)=y(0)=y(T+1)=0,\end{array}\right.\tag 1.1$$ where $\phi(s)=|s|^{p-2}s$, $p>1$ and the nonlinear terms $f_{k}(i,x,y)~(k=1,2)$ may be singular at $(x,y)=(0,0)$.
查看全文  查看/发表评论  下载PDF阅读器