龙琼,穆春来,张攀,周寿明.一类二元可积系统的适定性问题研究[J].数学研究及应用,2014,34(3):349~361
一类二元可积系统的适定性问题研究
Well-Posedness for a New Two-Component Integrable System
投稿时间:2013-05-16  最后修改时间:2013-09-11
DOI:10.3770/j.issn:2095-2651.2014.03.012
中文关键词:  Besov空间  二元可积系统  适定性.
英文关键词:Besov space  two-component integrable system  local well-posedness.
基金项目:国家自然科学基金(Grant No.11371384).
作者单位
龙琼 重庆大学数学与统计学院, 重庆 401331 
穆春来 重庆大学数学与统计学院, 重庆 401331 
张攀 重庆大学数学与统计学院, 重庆 401331 
周寿明 重庆师范大学数学学院, 重庆 401331 
摘要点击次数: 1148
全文下载次数: 2443
中文摘要:
      我们主要考虑一类新的二元可积系统.该系统不仅具有双哈密尔顿结构,满足无限守恒律,且关于其Lax对可积.本文我们主要确立了在Besov空间($s>\max\{2+\frac{1}{p},\frac{5}{2}\}$)范围内该系统的局部适定性.
英文摘要:
      In this paper, we consider a new two-component integrable system with cubic nonlinearity, which can be deduced by a curve flow and it is integrable with its Lax pair, bi-Hamiltonian structure, and infinitely many conservation laws. We mainly establish the local well-posedness of this system in a range of the Besov spaces $B^s_{p,r}$ with $s>\max\{2+\frac{1}{p},\frac{5}{2}\}$.
查看全文  查看/发表评论  下载PDF阅读器