尤利华,董欣.单圈图的最大Balaban指数与最大和Balaban指数[J].数学研究及应用,2014,34(4):392~402
单圈图的最大Balaban指数与最大和Balaban指数
The Maximum Balaban Index (Sum-Balaban Index) of Unicyclic Graphs
投稿时间:2013-05-05  最后修改时间:2014-01-28
DOI:10.3770/j.issn:2095-2651.2014.04.002
中文关键词:  Balaban指数  和Balaban指数  单圈  最大值
英文关键词:Balaban index  Sum-Balaban index  unicyclic  maximum.
基金项目:广州市珠江科技新星项目(Grant No.2011J2200090), 广东省国际科技合作创新平台项目(Grant No.2012gjhz0007).
作者单位
尤利华 华南师范大学数学科学学院广东 广州 510631 
董欣 华南师范大学数学科学学院广东 广州 510631 
摘要点击次数: 1064
全文下载次数: 3359
中文摘要:
      连通图$G$的Balaban指数定义为: $J(G)=\frac{|E(G)| }{\mu +1}\sum\limits_{e=uv\in E(G)}\frac{1}{{^{\sqrt{D_{G}(u)D_{G}(v)}}} }, $其和Balaban指数定义为: $SJ(G)=\frac{|E(G)| }{\mu 1}\sum\limits_{e=uv\in E(G)}\frac{1}{{^{\sqrt{D_{G}(u) D_{G}(v)}}} },$这里 $D_{G}(u)=\sum\limits_{w\in V(G)}d_{G}(u,w),$ $\mu$ 是图$G$的基本圈的数目.本文刻画了$n$阶单圈图中具有最大Balaban指数的图与具有最大和Balaban指数的图.
英文摘要:
      The Balaban index of a connected graph $G$ is defined as $$J(G)=\frac{|E(G)| }{\mu +1}\sum_{e=uv\in E(G)}\frac{1}{{^{\sqrt{D_{G}(u)D_{G}(v)}}} },$$ and the Sum-Balaban index is defined as $$SJ(G)=\frac{|E(G)| }{\mu 1}\sum_{e=uv\in E(G)}\frac{1}{{^{\sqrt{D_{G}(u) D_{G}(v)}}} }, $$ where $D_{G}(u)=\sum_{w\in V(G)}d_{G}(u,w),$ and $\mu$ is the cyclomatic number of $G$. In this paper, the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on $n$ vertices are characterized, respectively.
查看全文  查看/发表评论  下载PDF阅读器