计省进,瞿勇科.单圈图的极小能量[J].数学研究及应用,2014,34(4):414~422
单圈图的极小能量
Minimal Energy on Unicyclic Graphs
投稿时间:2013-07-10  最后修改时间:2014-02-24
DOI:10.3770/j.issn:2095-2651.2014.04.004
中文关键词:  图能量  单圈图  匹配  拟序.
英文关键词:graph energy  unicyclic graph  matching  quasi-order.
基金项目:国家自然科学基金(Grant No.11326216), 山东理工大学基金(Grant No.413010).
作者单位
计省进 山东理工大学理学院, 山东 淄博 255049 
瞿勇科 洛阳师范学院数学院, 河南 洛阳 471022 
摘要点击次数: 1222
全文下载次数: 1276
中文摘要:
      对于一个简单图$G$,图$G$的能量$E(G)$定义为它的邻接矩阵的所有特征值的绝对值之和.令$\mathscr{U}_{n}$表示所有具有$n$个的连通单圈图的集合.令$\mathscr{U}^{r}_{n}=\{G\in\mathscr{U}_{n}|\,d(x)=r$, for any vertex $x\in V(C_{\ell})\}$, 其中 $r\geq 2$且$C_{\ell}$是$G$中唯一的圈. $\mathscr{U}^{r}_{n}$中每个单圈图称为$r$-圈-正则图.在$\mathscr{U}_{n}^{4}$中,我们完全刻画了具有唯一的极小能量图$C_{9}^{3}(2,2,2)\circ S_{n-8}$. 此外, 该图在 $\mathscr{U}_{n}^{r}$ (for $r=3,4$)中也是唯一的极小能量图.
英文摘要:
      For a simple graph $G$, the energy $E(G)$ is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let $\mathscr{U}_{n}$ denote the set of all connected unicyclic graphs with order $n$, and $\mathscr{U}^{r}_{n}=\{G\in\mathscr{U}_{n}|\,d(x)=r$ for any vertex $x\in V(C_{\ell})\}$, where $r\geq 2$ and $C_{\ell}$ is the unique cycle in $G$. Every unicyclic graph in $\mathscr{U}^{r}_{n}$ is said to be a cycle-$r$-regular graph. In this paper, we completely characterize that $C_{9}^{3}(2,2,2)\circ S_{n-8}$ is the unique graph having minimal energy in $\mathscr{U}_{n}^{4}$. Moreover, the graph with minimal energy is uniquely determined in $\mathscr{U}_{n}^{r}$ for $r=3,4$.
查看全文  查看/发表评论  下载PDF阅读器