张广耀,朱慧倩.用于周期有限带Dirac谱问题非线性化的迹公式[J].数学研究及应用,2016,36(2):183~193
用于周期有限带Dirac谱问题非线性化的迹公式
Trace Formulae for the Nonlinearization of Periodic Finite-Bands Dirac Spectral Problem
投稿时间:2015-04-09  最后修改时间:2015-09-14
DOI:10.3770/j.issn:2095-2651.2016.02.007
中文关键词:  迹公式  周期N-bands Dirac算子  非线性化  可积Hamilton系统
英文关键词:trace formulae  periodic $N$-bands Dirac operator  nonlinearization  integrable Hamiltonian system
基金项目:国家自然科学基金(Grant No.61473332), 浙江省自然科学基金(Grant No.LQ14A010009), 湖州市自然科学基金(Grant No.2013YZ06).
作者单位
张广耀 湖州师范学院, 浙江 湖州 313000 
朱慧倩 湖州师范学院, 浙江 湖州 313000 
摘要点击次数: 821
全文下载次数: 1057
中文摘要:
      本文研究具有周期有限带位势的Dirac算子,利用Dirac算子与单值算子的交换性,定义Bloch函数和乘子曲线,获得Dubrovin-Novikov型公式;进而通过复球面上的留数计算及规范变换,分别得到相应于谱带左端点、右端点以及双侧端点的特征函数的迹公式.作为应用,将Dirac谱问题非线性化得到在Liouville意义下完全可积的Hamilton系统.
英文摘要:
      This paper deals with a Dirac operator with periodic and finite-bands potentials. Taking advantage of the commutativity of the monodromy operator and the Dirac operator, we define the Bloch functions and multiplicator curve, which leads to the formula of Dubrovin-Novikov's type. Further, by calculation of residues on the complex sphere and via gauge transformation, we get the trace formulae of eigenfunctions corresponding to the left end-points and right end-points of the spectral bands, respectively. As an application, we obtain a completely integrable Hamiltonian system in Liouville sense through nonlinearization of the Dirac spectral problem.
查看全文  查看/发表评论  下载PDF阅读器