赵艳,刘西民.一类浸入在半黎曼卷积空间的完备超曲面[J].数学研究及应用,2016,36(6):723~731
一类浸入在半黎曼卷积空间的完备超曲面
A Class of Complete Hypersurfaces Immersed in Semi-Riemannian Warped Product Spaces
投稿时间:2015-10-19  最后修改时间:2016-03-09
DOI:10.3770/j.issn:2095-2651.2016.06.012
中文关键词:  半黎曼流形  卷积  完备超曲面  高度函数
英文关键词:semi-Riemannian manifold  warped product  complete hypersurface  height function
基金项目:国家自然科学基金(Nos.11371076; 11431009).
作者单位
赵艳 大连理工大学数学科学学院, 辽宁 大连 116024 
刘西民 大连理工大学数学科学学院, 辽宁 大连 116024 
摘要点击次数: 491
全文下载次数: 591
中文摘要:
      我们研究的是浸入在半黎曼卷积空间$\epsilon\textit{I}\times _{f}M^{n}$的完备超曲面,其中$M^{n}$是连通的$n$维可定向黎曼流形.当纤维$M^{n}$是完备的,并且界面曲率$-k\leq K_{M}$, 其中$k$为正常数,对于高度函数$h$,如果对其梯度的范数进行适当限制,我们得到浸入在半黎曼卷积空间的完备超曲面是切片.我们运用的原理是是著名的推广的极大值原理.
英文摘要:
      We deal with complete hypersurfaces immersed in a semi-Riemannian warped product of the type $\epsilon\textit{I}\times _{f}M^{n}$, where $M^{n}$ is a connected $n$-dimensional oriented Riemannian manifold. When the fiber $M^{n}$ is complete with sectional curvature $-k\leq K_{M}$ for some positive constant $k$, under appropriate restrictions on the norm of the gradient of the height function $h$, we proceed with our technique in order to guarantee that complete hypersurface immersed in a semi-Riemannian warped product is a slice. Our approach is based on the well known generalized maximum principle and another suitable maximum principle at the infinity due to Yau.
查看全文  查看/发表评论  下载PDF阅读器