Devendra KUMAR,Payal BISHNOI,Mohammed HARFAOUI.On the Growth Properties of Solutions for a Generalized Bi-Axially Symmetric Schr\"{o}dinger Equation[J].数学研究及应用,2017,37(2):214~222
On the Growth Properties of Solutions for a Generalized Bi-Axially Symmetric Schr\"{o}dinger Equation
On the Growth Properties of Solutions for a Generalized Bi-Axially Symmetric Schr\"{o}dinger Equation
投稿时间:2015-10-30  最后修改时间:2016-06-08
DOI:10.3770/j.issn:2095-2651.2017.02.010
中文关键词:  Schro\"{o}dinger equation  scattering potential  Jacobi polynomials  order and type
英文关键词:Schro\"{o}dinger equation  scattering potential  Jacobi polynomials  order and type
基金项目:
作者单位
Devendra KUMAR Department of Mathematics, Faculty of Sciences Al-Baha University, P.O.Box-1988, Alaqiq, Al-Baha-65431, Saudi Arabia, K.S.A. 
Payal BISHNOI Department of Mathematics, M.M.H. College, Ghaziabad (U.P.), India 
Mohammed HARFAOUI University Hassan II-Casablanca, Laboratory of Mathematics, Cryptography and Mechanics, F.S.T, B.O.Box 146, Mohammedia, Morocco 
摘要点击次数: 496
全文下载次数: 571
中文摘要:
      In this paper, we have considered the generalized bi-axially symmetric Schr\"{o}dinger equation $$\frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2} + \frac{2\nu} {x}\frac{\partial \varphi} {\partial x} + \frac{2\mu} {y}\frac{\partial \varphi} {\partial y} + \{K^2-V(r)\} \varphi=0,$$ where $\mu,\nu\ge 0$, and $rV(r)$ is an entire function of $r=+(x^2+y^2)^{1/2}$ corresponding to a scattering potential $V(r)$. Growth parameters of entire function solutions in terms of their expansion coefficients, which are analogous to the formulas for order and type occurring in classical function theory, have been obtained. Our results are applicable for the scattering of particles in quantum mechanics.
英文摘要:
      In this paper, we have considered the generalized bi-axially symmetric Schr\"{o}dinger equation $$\frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2} + \frac{2\nu} {x}\frac{\partial \varphi} {\partial x} + \frac{2\mu} {y}\frac{\partial \varphi} {\partial y} + \{K^2-V(r)\} \varphi=0,$$ where $\mu,\nu\ge 0$, and $rV(r)$ is an entire function of $r=+(x^2+y^2)^{1/2}$ corresponding to a scattering potential $V(r)$. Growth parameters of entire function solutions in terms of their expansion coefficients, which are analogous to the formulas for order and type occurring in classical function theory, have been obtained. Our results are applicable for the scattering of particles in quantum mechanics.
查看全文  查看/发表评论  下载PDF阅读器