Positive Periodic Solutions of Second-Order Singular Coupled Systems with Damping Terms

DOI：10.3770/j.issn:2095-2651.2017.04.005

 作者 单位 陈瑞鹏 北方民族大学数学与信息科学学院, 宁夏 银川 750021 李小亚 北方民族大学数学与信息科学学院, 宁夏 银川 750021

运用Schauder不动点定理和反极大值原理, 为二阶奇异耦合系统\left\{ \aligned x''+p_1(t)x'+q_1(t)x=f_1(t,y(t))+c_1(t),\\ y''+p_2(t)y'+q_2(t)y=f_2(t,x(t))+c_2(t)\\ \endaligned\right. 建立了正周期解的存在性定理, 其中$p_i,\ q_i,\ c_i\in C(\mathbb{R}/T\mathbb{Z};\mathbb{R})$, $i=1,2$; $f_1,\ f_2\in C(\mathbb{R}/T\mathbb{Z}\times(0,\infty),\mathbb{R})$且在$0$处有奇性. 本文的主要结果推广和发展了已有文献的相应结论.

We establish the existence of positive periodic solutions of the second-order singular coupled systems \left\{ \aligned x''+p_1(t)x'+q_1(t)x=f_1(t,y(t))+c_1(t),\\ y''+p_2(t)y'+q_2(t)y=f_2(t,x(t))+c_2(t),\\ \endaligned\right. where $p_i,\ q_i,\ c_i\in C(\mathbb{R}/T\mathbb{Z};\mathbb{R}),\ i=1,2$;\ \ $f_1,\ f_2\in C(\mathbb{R}/T\mathbb{Z}\times(0,\infty),\mathbb{R})$ and may be singular near the zero. The proof relies on Schauder's fixed point theorem and anti-maximum principle. Our main results generalize and improve those available in the literature.