Hypergraphs with Spectral Radius at most $\sqrt[r]{2+\sqrt{5}}$
Hypergraphs with Spectral Radius at most $\sqrt[r]{2+\sqrt{5}}$
投稿时间:2018-02-06  修订日期:2018-02-06
DOI:
中文关键词:  
英文关键词:$r$-uniform hypergraphs, spectral radius, $\alpha$-normal
基金项目:
作者单位E-mail
满守东 天津财经大学 manshoudong@163.com 
陆临渊 University of South Carolina, Columbia, SC 29208, USA  
摘要点击次数: 75
全文下载次数: 
中文摘要:
      
英文摘要:
      In our previous paper, we classified all $r$-uniform hypergraphs with spectral radius at most $\sqrt[r]{4}$, which directly generalizes Smith's theorem for the graph case $r=2$. It is natural to investigate the structures of the hypergraphs with spectral radius slightly beyond $\sqrt[r]{4}$. For $r=2$, the graphs with spectral radius at most $\sqrt{2+\sqrt{5}}$ are classified by [{\em Brouwer-Neumaier, Linear Algebra Appl., 1989}]. Here we consider the $r$-uniform hypergraphs $H$ with spectral radius at most $\sqrt[r]{2+\sqrt{5}}$. We show that $H$ must have a quipus-structure, which is similar to the graphs with spectral radius at most $\frac{3}{2}\sqrt{2}$ [{\em Woo-Neumaier, Graphs Combin. 2007}].
  查看/发表评论  下载PDF阅读器