A Priori Estimates for a Quasilinear Elliptic PDE

Yang Zuodong
(Dept. of Math., Henan Normal University, Xinxiang 453002)

Abstract In the recent past many results have been established on positive solutions to boundary value problems of the form

\[
- \operatorname{div}(|Du(x)|^{p-2}Du(x)) = \lambda f(u(x)) \quad \text{in} \quad \Omega,
\]

\[
u(x) = 0 \quad \text{on} \quad \partial \Omega,
\]

where \(\lambda > 0 \), \(\Omega \) is a bounded smooth domain and \(f(s) \geq 0 \) for \(s \geq 0 \). In this paper we study a priori estimates of positive radial solutions of such problems when \(N > p > 1 \), \(\Omega = B_1 = \{x \in \mathbb{R}^N; |x| < 1\} \) and \(f \in C^1(0, \infty) \cap C^0([0, \infty)) \), \(f(0) = 0 \).

Keywords estimates, elliptic, quasilinear.

Classification AMS(1991) 35J65, 35B25/ CCL O175.25

1. Introduction

In this paper, we consider the set of positive radial solution to the following quasilinear elliptic PDE

\[
\operatorname{div}(|Du|^{p-2}Du) + \lambda f(u) = 0 \quad \text{in} \quad \Omega,
\]

\[
u = 0 \quad \text{on} \quad \partial \Omega,
\]

where \(\Omega \) denotes the unit ball in \(\mathbb{R}^N (N \geq p) \), and \(\lambda > 0 \). Here \(f : [0, \infty) \to \mathbb{R} \) satisfies

\[
f(0) = 0, \quad f'(u) \geq 0, \quad \lim_{u \to \infty} \frac{f(u)}{u^q} = L_0 > 0, \quad \lim_{u \to \infty} \frac{f(u)}{u^q} = L_0^* \]

for some \(q \) with \(p - 1 < q < ((p - 1)N + p)/(N - p) \). For \(N = p \) we have \(p - 1 < q < \infty \).

Problems (1.1) - (1.2) arises from many branches of mathematics and applied mathematics. The existence and uniqueness of the positive solutions of (1.1) - (1.2) have been studied by many authors. See, for example, [1 - 12] and the references therein.

*Received November 27, 1995. Supported by the Foundations of Henan Education Committee, and the Committee on Science and Technology of Henan Province.
A natural question which then arises is to determine how λ and $d = \max_\Omega u$ are related. When $p = 2$, the related results have been obtained by [13]. In this paper, we will prove the following theorem.

Theorem 1 If u is a solution of (1.1), (1.2) with $d = \max_\Omega u$, and f satisfies (1.3) and (1.4), then for small λ we have

$$
\left(\frac{p-1}{p} \right)^{p-1} (N - 1) \leq \frac{\lambda f(d)}{d^{p-1}} \leq C,
$$

where C is a constant that is independent of λ and d.

Assuming now that (1.1), (1.2) has a positive radial solution, let us denote it as λ. Letting $d = \max_\Omega u$, we then define $\lambda = u/\lambda$. Then λ satisfies

$$
\text{div}(|Dv|^{p-2}Dv) + \frac{\lambda}{d^{p-1}} f(v) = 0 \text{ in } \Omega,
$$

$$
v = 0 \text{ on } \partial\Omega,
$$

$$
0 < v \leq 1 \text{ in } \Omega
$$

with the aid of theorem 1, we will also prove the following theorem.

Theorem 2 If λ satisfies (1.1), (1.2) and f satisfies (1.3) and (1.4) then (for some subsequence) $\lim_{\lambda \to 0} \lambda = v$ and v is a positive solution of

$$
\text{div}(|Dv|^{p-2}Dv) + L_1 v = 0 \text{ in } \Omega,
$$

$$
v = 0 \text{ on } \partial\Omega,
$$

where $L_1 = \lim_{\lambda \to 0} \lambda f(v)/\lambda$.

Theorem 3 Assume that f satisfies (1.3) and (1.4). Let $\lambda_n \to 0$ and u_n be positive radial solutions of (1.1) - (1.2) for $\lambda = \lambda_n$ such that $d = \|u_n\|_{\infty} \to \infty$ as $n \to \infty$. Then $(L_{\lambda_n}^{1/(q-p+1)} u_n \to \omega_q$ in $C^1(\Omega) \text{ as } n \to \infty$, where ω_q is a positive radial solution of the problem

$$
\text{div}(|D\omega|^{p-2}D\omega) = \omega^q \text{ in } \Omega, \quad \omega = 0 \text{ on } \partial\Omega.
$$

2. Preliminaries

We consider positive solution of (1.1), (1.2) are radial solutions, thus, $u = u(r, \lambda)$ satisfies

$$
(\Phi_p(u'))' + \frac{N-1}{r} \Phi_p(u') + \lambda f(u) = 0,
$$

$$
u(0) = d, \quad u'(0) = 0, \quad u(1) = 0, \quad u'(r) < 0 \text{ for } 0 < r < 1.
$$

Multiplying (2.1) by u' and integrating on $(0,1)$ gives

$$
(p-1)/p \int_0^1 u'(1) \quad p + \int_0^1 (N-1)/r \quad u' \quad p dr = \lambda F(d),
$$

--- 374 ---
where \(F(u) = \int_0^u f(s) \, ds \).

Another useful identity is obtained by multiplying (2.1) by \(r^{N-1} \) and integrating on \((0, r)\). This gives

\[
- r^{N-1} \Phi_p(u') = \lambda \int_0^r s^{N-1} f(u(s)) \, ds. \tag{2.4}
\]

Now using the fact that \(f \) is increasing, \(u \) is decreasing and \(u \geq 0 \), we obtain

\[
- u' \geq \left(\frac{\lambda f(u)}{N} \right)^{1/(p-1)}. \tag{2.5}
\]

3. Proof of Theorem

We first recall a Pohozaev identity which was obtained by Ni and Serrin\[^8\].

Lemma 3.1 Let \(u(r) \) be a solution of (2.1) in \((r_1, r_2) \subset (0, \infty)\) and let \(a \) be an arbitrary constant. Then, for each \(r \in (r_1, r_2) \) we have

\[
\frac{d}{dr} \left[r^n (1 - a/ p) | u' |^p + F(u) + \frac{a}{r} uu' | u' |^{p-2} \right] = r^{n-1} \left[nF(u) - aF(u) + (a + 1) - n/a \right] | u' |^p. \tag{2.3}
\]

Proof of Theorem 1 The left hand side of the inequality mentioned in theorem 1 above is now established with identity (2.3). First, using Hölder’s inequality we have

\[
d = u(0) - u(1) = \int_0^1 - u' \, ds = \int_0^1 \frac{u'}{s} \, dF(r) \leq (\int_0^1 (- u')^p / r^d r)^{1/p} \left(\frac{p-1}{p} \right)^{(p-1)/p}.
\]

Using (2.3) we now obtain

\[
d^p \leq (\frac{p-1}{p})^{p-1} \int_0^1 (- u')^p / r \, dF \leq (\frac{p-1}{p})^{p-1} \frac{\lambda F(d)}{(N-1)}.
\]

Finally, since \(f' \geq 0 \) we have

\[
F(d) = \int_0^d f(s) \, ds = df(d) - \int_0^d sf'(s) \, ds \leq df(d).
\]

Therefore,

\[
((p-1)/p)^{p-1} (N-1) \leq \frac{\lambda f(d)}{d^{p-1}}. \tag{3.1}
\]

Thus, the left hand side of the inequality in theorem is established.

To obtain the other half of theorem 1, we begin with inequality (2.5)

\[
- u' \geq \left(\frac{\lambda f(u)}{N} \right)^{1/(p-1)}.
\]

Next, using (1.3) and (1.4) we see that there exists a \(C > 0 \) such that

\[
- u' \geq \left(\frac{\lambda f(u)}{N} \right)^{1/(p-1)} \geq \left(\frac{\Delta ru^q}{N} \right)^{1/(p-1)}.
\]
Dividing by \(u^{(q'-p')/(p'-1)} \) and integrating this inequality we obtain
\[
\frac{1}{u^{(q'-p')/(p'-1)}} - \frac{1}{d^{(q'-p')/(p'-1)}} \geq \partial^1/ (p'-1) r^{p'/ (p'-1)}.
\]

Therefore,
\[
\left(\frac{u}{d} \right)^{(q'-p')/(p'-1)} \leq \frac{1}{1 + \partial^1/ (p'-1) d^{(q'-p')/(p'-1)} r^{p'/ (p'-1)}}.
\] (3.2)

We will now estimate \(|u' (1)/d| \) from above and below. This will in turn lead to an upper bound for \(\lambda d^{q'-p'+1} \| f (d) \| / d^{p'-1} \) for small \(\lambda \) (and thus large \(d \) by (3.1)).

First, we estimate \(|u' (1)/d| \) from above. From (2.4) and (1.3) and (1.4) we have
\[
|u' (1)|^{p'-1} = \lambda \int_0^1 s^{N-1} f (u) \, ds \leq \partial \int_0^1 s^{N-1} u^q \, ds.
\]

Using (3.2), we obtain
\[
|\frac{u'}{d} (1)|^{p'-1} \leq \partial d^{q'-p'+1} \int_0^1 s^{N-1} (u/d)^q \, dr
\leq \partial d^{q'-p'+1} \int_0^1 \frac{s^{N-1} \, dr}{1 + \partial d^{q'-p+1} d^{p'-1} r^{p'/ (p'-1)}}.
\]

Letting
\[
s = (\lambda d^{q'-p+1})^{1/p} r,
\]
\[
ds = (\lambda d^{q'-p+1})^{1/p} d r,
\]
we obtain
\[
|\frac{u'}{d} (1)|^{p'-1} \leq \frac{1}{C(\lambda d^{q'-p+1})^{(N-1)/p}} \int_0^{\lambda d^{q'-p+1}} \frac{s^{N-1} \, ds}{1 + Cs^{p'/ (q'-p+1)}}.
\] (3.3)

Now we estimate \(|u' (1)/d| \) from below.

We return to (2.1), (2.2)
\[
(\Phi_p (u'))' + \frac{N}{r} \Phi (\Phi) + \lambda f (u) = 0 \quad 0 < r < 1,
\]
\[
u (0) = d > 0, \quad u' (0) = 0, \quad u (1) = 0, \quad u' (r) < 0.
\]

We define
\[
E (r) = (p-1)/p \mid u' \mid^p (r) + \lambda F (u (r))
\]
and
\[
H (r) = r E (r) + (N-1)/p uu' (r) \mid u' \mid^{p-2}.
\]

By Lemma 3.1, we obtain on \((r_0, r_1) \) after a lengthy computation
\[
r_1^{N-1} H (r_1) - r_0^{N-1} H (r_0) = \int_{r_0}^{r_1} \lambda r^{N-1} [NF (u) - (N-1)/p uf (u)] \, d r.
\] (3.4)
Let t_0 be such that $d \geq u(r) \geq kd$ for all $0 \leq r \leq t_0$ and $u(t_0) = kd$ for $(\frac{N-p}{Np})^{1/(q+1)} < k < 1$.

Then from (2.4) we have

$$((- u')^{p-1} = \frac{\lambda}{r^{N-1}} \int_0^r s^{N-1} f(u) \, ds$$

and hence

$$\lambda f(kd) \, r \leq N (- u')^{p-1} \leq \lambda f(d) \, r$$
on $[0, t_0]$. Integrating on $[0, t_0]$ gives

$$C_1 \left(\lambda f(d) \right)^{N/p} \leq t_0 \leq C_1 \left(\lambda f(kd) \right)^{N/p}, \quad (3.5)$$

where $C_1 = \left(\frac{p}{(p-1)} \right)^{1/(p-1)} (1-k)^{p-1} N^{1/p} > 0$. Substituting $r_0 = 0$ and $r_1 = t_0$ in (3.4) and using (3.5) gives

$$\int_0^{t_0} \lambda r^{N-1} (NF(u) - (N-p)/p) \, dr$$

$$\leq \int_0^{t_0} \lambda r^{N-1} (NF(kd) - (N-p)/p) \, dr$$

$$\geq \lambda \left(\frac{NF(kd) - (N-p)/p}{p} \right) \left(\frac{d^{p-1}}{f(d)} \right)^{N/p} \left(\frac{1}{\lambda^{N/p}} \right). \quad (3.6)$$

Since f satisfies (1.3) and (1.4), we then have that there exists $A \geq 0$ such that

$$NF(u) - (N-p)/p \geq u$$

for all u. Thus, we have by (1.3), (1.4), (3.4) and (3.6)

$$(p-1)/p \left| u' \right|^{p-1} = H(1) \geq \frac{C}{\lambda} \left(\frac{NF(kd) - (N-p)/p}{p} \right) \int_0^{t_0} \left(\frac{d^{p-1}}{f(d)} \right)^{N/p}$$

$$(1 - t_0^N)/N \geq \lambda \left(\frac{p-N}{p} \right) d^{(N(p-1)+p-q(N-p))/p} - A \lambda$$

Therefore,

$$\left| u' \right|^{p-1} \left(\frac{1}{d^p} \right) \geq \frac{C}{(\lambda d^{q-p+1})^{(N-p)/p}}. \quad (3.7)$$

Hence, combining (3.3) and (3.7) gives

$$\frac{C}{(\lambda d^{q-p+1})^{(N-p)/p}} \leq \left| u' \right| \left(\frac{1}{d^p} \right) \quad (3.8)$$

Now we let $T = (\lambda d^{q-p+1})^{1/p}$, and by rewriting (3.8) we see that we have

$$CT^{(N-p)/(p-1)} \leq \left(\int_0^T \frac{s^{N-1} ds}{1 + Cs^{p/(q-p+1)}} \right)^{p/(p-1)}. \quad (3.9)$$
We want to show now that T is bounded as $\lambda \to 0$. We need to consider separately the cases $N > p$ and $N = p$.

Case I $\square N > p$

Suppose now that $T \to 0$ as $\lambda \to 0$. We will show that this is impossible. First, if the term on the right is bounded then we are done (this is the case if $q < \frac{(p - 1) N}{(N - p)}$).

Assuming, therefore, that term goes to infinity as $\lambda \to 0$ we divide both sides by $T^{(N - p)}$ and get

$$0 < C^{p - 1} \leq \left(\int_0^T \frac{s^{N - 1} ds}{1 + C s^{pq/(q - p + 1)}} \right)^p.$$

We will now show that if $T \to \infty$ as $\lambda \to 0$ then the right hand side of the above goes to zero and thus contradicts the above inequality. Applying L’Hôpital’s rule we obtain

$$0 < C^{p - 1} \leq \left(\lim_{T \to \infty} \frac{T^{N - 1}}{(1 + CT^{pq/(q - p + 1)})^p} \right)^p$$

$$= \left(\lim_{T \to \infty} \frac{T^{N - 1}}{(1 + CT^{pq/(q - p + 1)})^p} \right)^p$$

$$= \left(\frac{p}{N - p} \right)^p \left(\lim_{T \to \infty} \frac{T^{1 - (p - 1)N + p}}{1 + CT^{pq/(q - p + 1)}} \right)^p$$

$$= \left(\frac{p}{N - p} \right)^p \left(\lim_{T \to \infty} \frac{T^{1 - (p - 1)N + p}}{1 + CT^{pq/(q - p + 1)}} \right)^p.$$

As $T \to \infty$ this goes to zero for $p - 1 < q < \frac{(p - 1) N}{(N - p)}$ and $N > p$. Hence we obtain the desired contradiction.

Case II $\square N = p$

For $N = p$, we can only conclude from (3.3) ad (3.7) (since $A\lambda / d^p \to 0$ as $\lambda \to 0$) that

$$0 < c_1 < | \frac{\mu A(1)}{d} | \leq \left(\int_0^T \frac{s^{N - 1} ds}{1 + C s^{pq/(q - p + 1)}} \right)^{1/(p - 1)}$$

$$\leq \left(\int_0^\infty \frac{s^{N - 1} ds}{1 + C s^{pq/(q - p + 1)}} \right)^{1/(p - 1)} \leq c_2 < \infty,$$

where c_1, c_2 are independent of λ. We now define

$$\lambda = \frac{A\lambda}{\lambda}.$$

Assuming that $T \to \infty$ as $\lambda \to 0$ we conclude from (3.2) that

$$\lambda \to 0 \quad (3.10)$$

uniformly say for $1/2 \leq r \leq 1$.

Claim $\square \lambda, v\lambda, (\phi_p(v\lambda))'$ are uniformly bounded on $[1/2, 1]$.

Once the claim is proven, we can then conclude that there is a subsequence with $\lambda \to v$ and $v\lambda \to v'$ uniformly on $[1/2, 1]$. From (3.10), we have that $v \equiv 0$ on $[1/2, 1]$. On the other hand, we have that

$$0 < c_1 \leq | v\lambda(1) | \leq c_2.$$
Therefore, \(v'(1) = \lim_{\lambda \to 0} v \lambda(1) \leq -c_1 < 0 \). Thus, \(v > 0 \) on \((1 - \varepsilon, 1)\). This contradicts that \(v \equiv 0 \) on \([1/2, 1]\). Thus, we only need to prove the claim.

Proof of Claim
Recalling (2.4) and (3.2) gives

\[
\begin{align*}
\lambda^{q' \cdot p + 1} \int_0^r s^{q' \cdot p + 1} v d s & \leq \lambda^{d^q \cdot p + 1} r^{N' \cdot p} \int_0^r s^{p' - 1} v d s \\
& \leq \lambda^{d^q \cdot p + 1} r^{N' \cdot p} \int_0^r \frac{s^{p' - 1} v d s}{1 + C(\lambda^{d^q \cdot p + 1}) q'(q' \cdot p + 1) s^{q'}(q' \cdot p + 1)}.
\end{align*}
\]

Letting

\[
\begin{align*}
t & = (\lambda^{d^q \cdot p + 1})^{1/p} s, \\
dt & = (\lambda^{d^q \cdot p + 1})^{1/p} ds,
\end{align*}
\]

gives

\[
(-v')^{p - 1} \leq \frac{\lambda^{d^q \cdot p + 1}}{1 + Ct^{q'/(q' \cdot p + 1)}} \int_0^r \frac{t^{p - 1} dt}{1 + Ct^{q'/(q' \cdot p + 1)}} = B < \infty.
\]

Thus, for \(r \in [1/2, 1] \) we have

\[
|v'| \leq B,
\]

where \(B \) is independent of \(\lambda \). From the differential equation we have

\[
|\Phi_p(v')'| = \frac{N - 1}{r} |v'|^{p - 1} + \frac{\lambda}{d^{p - 1}} f (vd).
\]

Using (3.2) again gives

\[
\begin{align*}
|\Phi_p(v')'| & \leq B^{p - 1} (N - 1) / r + \lambda v^q d^q \cdot p + 1 \\
& \leq B^{p - 1} (N - 1) / r + \frac{\lambda d^{q' \cdot p + 1}}{C(\lambda d^{q' \cdot p + 1}) q'(q' \cdot p + 1)} \\
& \leq B^{p - 1} (N - 1) / r + \frac{1}{(\lambda d^{q' \cdot p + 1}) (p - 1)/(q' \cdot p + 1)} \\
& \leq C
\end{align*}
\]

on \([1/2, 1]\) because by assumption \(\lambda d^{q' \cdot p + 1} \to \infty \) as \(\lambda \to 0 \). Thus

\[
v, |v'|, |\Phi_p(v')'| \leq C
\]

and this completes the proof of the claim.

Proof of Theorem 2
From (2.4) we have that

\[
\begin{align*}
\lambda^{d^q \cdot p + 1} \int_0^r s^{N' \cdot p} f (\lambda d) d s.
\end{align*}
\]

From theorem 1, we have that \(\lambda f (d) / d^{p - 1} \leq C \). Thus, since \(f'(u) \geq 0 \) we have that

\[
\begin{align*}
\lambda^{d^q \cdot p + 1} \int_0^r s^{N' \cdot p} f (\lambda d) d s & \leq C \frac{N}{N'}
\end{align*}
\]

--- 379 ---
Hence,

\[\frac{|v'|}{r} p^{-1} \leq C. \]

Substituting back into (2.1) we further obtain

\[\left| (\Phi_p(v\lambda))' \right| \leq \frac{N-1}{r} \left| v\lambda \right| p^{-1} + \frac{\lambda f(d)}{dp^{-1}} \leq C. \]

so combining the above and recalling that \(0 \leq \lambda \leq 1 \) we obtain that

\[\lambda, \left| v\lambda \right|, \left| (\Phi_p(v'))' \right| \leq C. \]

Thus, by the Arzela - Ascoli theorem, there is a subsequence of the \(\lambda \) (still denoted \(\lambda \)) such that

\[\Phi_p(v\lambda) \to \omega \Rightarrow v\lambda \to \Phi_p^{-1}(\omega) = v' \text{ uniformly}, \]

\[\lambda = \int_1^r v\lambda(s) \, ds \to \int_1^r \Phi_p^{-1}(\omega) \, ds = v \text{ uniformly}. \]

For some further subsequence (again denoted \(\lambda \)), we have

\[\lim_{\lambda \to 0} \frac{\lambda f(d)}{dp^{-1}} = L_1 < \infty. \]

Since \(\lambda \to v \) uniformly on \([0, 1]\), we also have that \(v(0) = 1 \) and \(v(1) = 0 \). Now, since \(L_1 < \infty \) we have by (3.8) that \(- v'(1) = \lim_{\lambda \to 0} v\lambda(1) = c > 0 \). Thus, for all \(\varphi > 0 \) there exists \(\delta > 0 \) such that \(\lambda \geq \delta \) for \(0 \leq r \leq 1 - \delta \). Returning to

\[(- v\lambda) p^{-1} = \frac{\lambda}{r^{N-1} dp^{-1}} \int_0^r r^{N-1} f(\lambda d) \, dr, \]

for \(0 < r \leq 1 - \delta < 1 \), this converges to

\[(- v') p^{-1} = \frac{L_1}{r^{N-1}} \int_0^r r^{N-1} v^q \, dr. \]

Thus, \(v \) is a solution of

\[(\Phi_p(v'))' + \frac{N-1}{r} \Phi_p(v') + L_1 v^q = 0 \]

on \(0 < r \leq 1 - \delta \). This holds for all \(\delta > 0 \). Now as \(\varphi \to 0 \) also \(\delta \to 0 \), thus \(v \) is a solution on \(0 < r < 1 \). Further, \(v > 0 \) on \([0, 1]\). This completes the proof of Theorem 2.

Proof of Theorem 3 Let \(u_n = \| u_n \| \infty u_n \). Then, \(v_n(r) \) satisfies \(\| v_n \| \infty = 1 \) and

\[- (r^{N-1} | v_n'' | p^{-2} r^{N-1} v_n')' = \lambda_n r^{N-1} (\| u_n \| \infty)^q p^{1-1} f(\| u_n \| \infty)/\| u_n \| \infty) \in (0, 1), \]

\[v_n'(0) = 0, v_n(1) = 0. \]

--- 380 ---
We shall show that the limit of \(\lambda n \| u_n \|_{q} \) is a non-zero number as \(n \to \infty \). In fact, we shall see that \(\lambda n \| u_n \|_{q} \to 0 \) as \(n \to \infty \). On the contrary, if \(\lambda n \| u_n \|_{q} \to 0 \) as \(n \to \infty \), then let \(\lambda n \| u_n \|_{q} = T_n \) and \(T_n \to 0 \) as \(n \to \infty \). Thus,

\[
- \text{div}(Dv_n | p-2 Dv_n) = T_n \left\{ f(\| u_n \|_{\infty}) / \| u_n \|_{q} \right\}.
\]

This and the regularity of \(- \text{div}(D \| p-2 D)\) implies that \(v_n \to 0 \) as \(n \to \infty \), since \(f(\| u_n \|_{\infty}) / \| u_n \|_{q} \) is uniformly bounded. This contradicts the fact that \(\| v_n \| = \infty = 1 \) for all \(n \). By proof of theorem 1, \(T_n \) is bounded. Let \(z_n = (L_0 T_n)^{1/(q-p+1)} v_n \) and \(T = \lim_{n \to \infty} T_n \). Then, the arguments above imply that \(z_n \to z \) in \(C^1(\Omega) \) and \(z = (L_0 T)^{1/(q-p+1)} v \). Here \(v \) satisfies

\[
- \left(r^{N-1} | v' | \right)^{\prime} + \lambda F(v) = 0 \quad \text{in} \quad (0,1),
\]

\[
v'(0) = 0, \quad v(1) = 0.
\]

Hence, \(z \) satisfies the problem

\[
- \left(r^{N-1} | z' | \right)^{\prime} + \lambda F(z) = 0 \quad \text{in} \quad (0,1)
\]

and

\[
z'(0) = 0, \quad z(1) = 0.
\]

This implies that

\[
(L_0 \lambda_n)^{1/(q-p+1)} u_n \to z \quad \text{in} \quad \Omega.
\]

This completes the proof of this theorem.

4. The \(N = 1 \) Case

For \(N = 1 \), equations (1.1) and (1.2) become

\[
(\Phi_p(u'))' + \lambda f(u) = 0 \quad \text{in} \quad 0 < r < 1,
\]

\[
u(0) = 0, \quad u(1) = 0, \quad u'(0) = A.
\]

Note that \(u \) must be symmetric about \(r = 1/2 \). We therefore denote \(u(1/2) = d = \max_{\Omega} u \). Multiplying by \(u' \) and integrating on \((0, r) \) gives

\[
\frac{p-1}{p} | u' | \left(r \right)^{p-2} + \lambda F(u) = \frac{p-1}{p} A^p,
\]

where \(F(u) = \int_0^u f(s) \, ds \). Thus, at \(r = 1/2 \) we obtain

\[
p/ (p - 1) \lambda F(d) = A^p.
\]

Thus,

\[
| u' |^p = p/ (p - 1) \lambda \left[F(d) - F(u) \right].
\]

Therefore, integrating on \((0, 1/2) \), we have

\[
\int_0^{1/2} \frac{u' \, dr}{\sqrt{F(d) - F(u)}} = 1/2 \left(\frac{p}{\lambda} \right)^{1/p} N p - 1.
\]
Letting $s = u(r)$, then $ds = u'(r) \, dr$, gives

$$\int_0^d \frac{ds}{\sqrt{F'(d) - F(s)}} = 1/2 \sqrt{N} \lambda.$$

Thus,

$$\int_0^d \frac{f(d) \, ds}{N F'(d) - F(s)} = 1/2 \sqrt{N} \lambda f(d).$$

Letting $t = s/d$ gives $dt = ds/d$ and, hence

$$\int_0^1 \frac{f(d) \, dt}{N F'(d) - F(td)} = 1/2 \sqrt{N} \lambda f(d).$$

Thus, to show that $\lambda f(d) / d^{p-1}$ is bounded, we only need to consider the left hand side of the above equation. Using (1.3) it is straightforward to see that

$$\lim_{d \to \infty} \frac{f(d) \, dt}{N F'(d) - F(td)} = \frac{q+1}{1 - t^{q+1}}.$$

Thus, we would like to such that

$$\lim_{d \to \infty} \int_0^1 \frac{f(d) \, dt}{N F'(d) - F(td)} = \sqrt{p+1} \int_0^1 \frac{dt}{1 - t^{q+1}}.$$

In order to do this, we will break the integral into two pieces and show that each is finite. For $0 \leq t \leq 1/2$ we have

$$\lim_{d \to \infty} \sup \int_0^{1/2} \frac{f(d) \, dt}{N F'(d) - F(td)} \leq \lim_{d \to \infty} \sup \int_0^{1/2} \frac{f(d) \, dt}{2 N p (F'(d) - F(1/2) d))} = \frac{p^{q+1}(q+1)}{2 p^{q+1} - 2^p}.$$

For $1/2 \leq t \leq 1$ we have $F(d) - F(td) = f(c) (1 - t) d$, where $td \leq c \leq d$. Since f is increasing we have $f(c) \geq f(td)$. Thus,

$$\lim_{d \to \infty} \sup \int_{1/2}^1 \frac{f(d) \, dt}{N F'(d) - F(td)} \leq \lim_{d \to \infty} \sup \int_{1/2}^1 \frac{f(d) \, dt}{N f(d/2) \int_{1/2}^1 \frac{dt}{1 - t}} = p/ (p - 1) 2^{1(q - 1)p+1}.$$

Thus, by the dominated convergence theorem we have

$$\lim_{\lambda \to 0} \frac{\lambda f(d) \, dt}{N (p - 1) d^{p-1}} = \lim_{d \to \infty} \int_0^1 \frac{f(d) \, dt}{N F'(d) - F(td)} = \sqrt{p+1} \int_0^1 \frac{dt}{1 - t^{q+1}} < \infty.$$

The proof of Theorem 2 for the case $N = 1$ is similar to the proof for $N \geq p$ described earlier.
References

