第18卷第3期 数学研究与评论 Vol. 18 No. 3 1998年8月 JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION Aug. 1998

抽象空间混合型微分积分方程两点边值问题的解

张克梅 （曲阜师范大学数学与计算机科学系，273165）

摘要 本文利用混合单调算子理论及Mönch的一个结果，得到了一类微分方程两个点边值问题的解。

关键词 正规锥，拟解对，非紧性测度。

分类号 AMS (1991) 34A37/CCL O175.8

1 引言

本文在Banach空间内研究了下列混合型微分方程两点边值问题:

\[-u'' = f(t, u, u, Tu, Su), \]
\[u(0) = u(1) = \theta. \]

若上式中的四个不等式均为等号，则称 \(\tau_0, w_0 \) 为问题 (1) 的拟解对。

设 \(\tau_0, w_0 \) 为 (1) 的拟解对。
\[\alpha (H) = \max_{t \in I} \alpha (H (t)) , \alpha (H) = \alpha (H (t)) . \]

2. Kuratowski Banach Hausdorff \(J = \{ a, b \} \) . \(x_\in \mathbb{E} \). \(x \in \mathbb{N} \). \(x = \beta (\{ x_n (t) | n \in \mathbb{N} \}) \). \(x \in \mathbb{N} \), \(K \in \mathbb{E} \). \(s \geq 0 \). \(x \in \mathbb{N} \). \(S \cap \mathbb{N} \).

3. \(L_2 \in \mathbb{E} \). \(B_1 = \{ u_n \} , B_2 = \{ _ \} .\]

4. \(L_2 \in \mathbb{E} \). \(u \in \mathbb{E} \). \(\mathcal{A} \) is a Banach space.

5. \(\mathcal{A} \) is a Banach space.

6. \(\frac{1}{\sqrt{M}} \left(e^{2 \sqrt{M}} - 1 \right) \left(L_1 + M + L_2 + L_3 + L_4 + L_5 \right) < 1. \)

7. \(u \in \mathbb{E} \). \(\tau \) is a Banach space.

8. \(\mathcal{A} \) is a Banach space.

9. \(0 \leq G (t , s) \leq \frac{1}{2} \sqrt{M} e^{2 \sqrt{M}} \left(e^{2 \sqrt{M}} - 1 \right) , \forall (t , s) \in I \times I. \)

--- 426 ---
\(A : [\mathcal{T}_0, \omega_0] \times [\mathcal{T}_0, \omega_0] \to E, \quad \mathcal{T}_0 \leq A(\tau_0, \omega_0), A(\omega_0, \mathcal{T}_0) \leq \omega_0; \quad (i) \ A \cap \mathbb{R} \\
\end{aligned} \)

\(\tau_n = A(\tau_{n-1}, \omega_{n-1}), \ \omega_n = A(\omega_{n-1}, \tau_{n-1}), \ n = 1, 2, \ldots. \)

\(\tau_0 \leq \tau_1 \leq \ldots \leq \tau_n \leq \ldots \leq \omega_n \leq \ldots \leq \omega_1 \leq \omega_0. \)

\(\mathcal{T}_0 \leq \mathcal{T}_1 \leq \ldots \leq \mathcal{T}_n \leq \ldots \leq \omega_n \leq \ldots \leq \omega_1 \leq \omega_0. \)

\(\begin{aligned}
\text{P}. \quad & f(t, \tau_{n-1}(t), \omega_{n-1}(t), (\mathcal{T}_{n-1})(t), (\omega_{n-1})(t)) + \mathcal{M}_{n-1}(t) \\
\leq & f(t, \tau_0(t), \omega_0(t), (\mathcal{T}_0)(t), (\omega_0)(t)) + \mathcal{M}_0(t) , \\
\leq & f(t, \omega_0(t), \tau_0(t), (\mathcal{T}_0)(t), (\mathcal{T}_0)(t)) + \mathcal{M}_0(t) , \\
\leq & f(t, \omega_0(t), \tau_0(t), (\mathcal{T}_0)(t), (\omega_0)(t)) + \mathcal{M}_0(t) . \\
\end{aligned} \)

\(m(t) \leq \frac{1}{\sqrt{M}} e^{\frac{2}{\sqrt{M}} - 1} (L_1 + M + L_2 + L_3) k_0 + 2L_4 h_0) \max(m(I), n(I)) , \)

\(n(t) \leq \frac{1}{\sqrt{M}} e^{\frac{2}{\sqrt{M}} - 1} (L_1 + M + L_2 + L_3) k_0 + 2L_4 h_0) \max(m(I), n(I)) , \)

\(p(t) = \max(m(t), n(t)), p(t) \leq \frac{1}{\sqrt{M}} e^{\frac{2}{\sqrt{M}} - 1} (L_1 + M + L_2 + L_3) k_0 + 2L_4 h_0) \)
The Solution of Mixed Type Integro-Differential Equation of Two Points Boundary Value Problem in Banach Space

Zhang Kemei

(Dept. of Math., Qufu Normal University, Shandong 273165)

Abstract

In this paper, a solution of two points boundary value problem of differential equation is obtained. The result in this paper generalized the conclusion in [5].

Keywords normal cone, coupled quasi-solutions, measure of noncompactness.