Drazin Spectrum and Weyl’s Theorem for Operator Matrices

CAO Xiao-hong¹ 2, GUO Mao-zheng¹, MENG Bin¹
(1. LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China;
2. College of Math. & Info. Sci., Shaanxi Normal University, Xi’an 710062, China)
(E-mail: xiaohongcao@snnu.edu.cn)

Abstract: A ∈ B(H) is called Drazin invertible if A has finite ascent and descent. Let σ̃(A) = {λ ∈ C : A − λI is not Drazin invertible } be the Drazin spectrum. This paper shows that if MC = (A C)
0 B
is a 2 × 2 upper triangular operator matrix acting on the Hilbert space H ⊕ K, then the passage from σ̃(A) \ σ̃(B) to σ̃(MC) is accomplished by removing certain open subsets of σ̃(A) \ σ̃(B) from the former, that is, there is equality
σ̃(A) \ σ̃(B) = σ̃(MC) \ G
where G is the union of certain holes in σ̃(MC) which happen to be subsets of σ̃(A) \ σ̃(B).

Weyl’s theorem and Browder’s theorem are liable to fail for 2 × 2 operator matrices. By using Drazin spectrum, it also explores how Weyl’s theorem, Browder’s theorem, a-Weyl’s theorem and a-Browder’s theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space.

Key words: Weyl’s theorem; a-Weyl’s theorem; Browder’s theorem; a-Browder’s theorem; Drazin spectrum.

MSC(2000): 47A53, 47A55
CLC number: O177.2

1. Introduction

Let H and K be infinite dimensional Hilbert spaces, let B(H, K) denote the set of bounded linear operators from H to K, and abbreviate B(H, H) to B(H). If A ∈ B(H), write σ(A) for the spectrum of A and σa(A) for the approximate point spectrum of A, ρ(A) = C \ σ(A). If A ∈ B(H), we use N(A) for the null space of A and R(A) for the range of A. For A ∈ B(H), if R(A) is closed and dimN(A) < ∞, we call A upper semi-Fredholm operator, and if dimH/R(A) < ∞, then A is called lower semi-Fredholm operator. Let Φ+(H) (Φ−(H)) be the set of all upper (lower) semi-Fredholm operators. A is called Fredholm operator if dimN(A) < ∞ and dimH/R(A) < ∞. Let A be semi-Fredholm and let n(A) = dimN(A) and d(A) = dimH/R(A), then we define the index of A by ind(A) = n(A) − d(A). An operator A is called Weyl if it is a Fredholm operator of index zero, and is called Browder if it is Fredholm “of finite ascent and descent”. We write α(A) and β(A) for the ascent and the descent for A ∈ B(H) respectively. The essential spectrum
\(\sigma_e(A) \), the Weyl spectrum \(\sigma_w(A) \) and the Browder spectrum \(\sigma_b(A) \) of \(A \) are defined respectively by: \(\sigma_e(A) = \{ \lambda \in C : A - \lambda I \) is not Fredholm\}, \(\sigma_w(A) = \{ \lambda \in C : A - \lambda I \) is not Weyl\} and \(\sigma_b(A) = \{ \lambda \in C : A - \lambda I \) is not Browder\}.

Following [1, Definition 4.1] we say that \(A \in B(H) \) is Drazin invertible (with a finite index) if there exist \(B, U \in B(H) \) such that \(U \) is nilpotent and

\[
AB = BA, \quad BAB = B, \quad ABA = A + U.
\]

Recall that the concept of Drazin invertibility was originally introduced by Drazin in [2] where elements of an associative semigroup satisfying an equivalent relation were called pseudo-invertible.

It is well known that \(A \) is Drazin invertible if and only if it has finite ascent and descent, which is also equivalent to the fact that \(A = A_1 \oplus A_2 \), where \(A_1 \) is invertible and \(A_2 \) not nilpotent (see [3, Proposition A] and [4, Corollary 2.2]). It is also well known that \(A \) is Drazin invertible if and only if \(A^* \) is Drazin invertible, where \(A^* \) is the conjugate of \(A \). The Drazin spectrum of \(A \) is defined by:

\[
\sigma_D(A) = \{ \lambda \in C : A - \lambda I \) is not Drazin invertible \}.
\]

If \(G \) is a compact subset of \(C \), write \(int G \) for the interior points of \(G \); \(iso G \) for the isolated points of \(G \); \(acc G \) for the accumulation points of \(G \); and \(\partial G \) for the topological boundary of \(G \). When \(A \in B(H) \) and \(B \in B(K) \) are given we denote by \(M_C \) an operator acting on \(H \oplus K \) of the form \(M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \), where \(C \in B(K,H) \).

In Section 2, we will characterize the Drazin spectrum of \(M_C \). Our result is: For a given pair \((A, B) \) of operators, there is equality, for every \(C \in B(K,H) \), \(\sigma_D(A) \cup \sigma_D(B) = \sigma_D(M_C) \cup G \), where \(G \) is the union of certain holes in \(\sigma_D(M_C) \) which happen to be subsets of \(\sigma_D(A) \cap \sigma_D(B) \).

In Section 3, we will use Drazin spectrum to study Weyl’s theorem. Our result is: If \(\sigma_D(A) \cap \sigma_D(B) \) has no interior points and if \(A \) is an isoloid operator for which Weyl’s theorem holds, then for every \(C \in B(K,H) \), Weyl’s theorem holds for \(\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \Rightarrow \) Weyl’s theorem holds for \(\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \).

2. Drazin Spectrum for \(2 \times 2 \) upper triangular operator matrices

Lemma 2.1 Suppose \(A \in B(H) \) and \(B \in B(K) \). If both \(A \) and \(B \) are Drazin invertible, then for every \(C \in B(K,H) \), \(M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \) is Drazin invertible. Hence for every \(C \in B(K,H) \), \(\sigma_D(M_C) \subseteq \sigma_D(A) \cup \sigma_D(B) \).

Proof Suppose \(\alpha(A) = \beta(A) = p \) and \(\alpha(B) = \beta(B) = q \). Let \(n = \max\{p, q\} \).

1) First we will prove that for any \(C \in B(K,H) \), \(\alpha(M_C) < \infty \). If we have \(N(M_C^{2n+1}) = N(M_C^n) \), we get the result. So we only need to prove \(N(M_C^{2n+1}) \subseteq N(M_C^n) \).

If \(u_0 \in N(M_C^{2n+1}) \) and \(u_0 = (x_0, y_0) \), then:

\[
0 = M_C^{2n+1}(x_0, y_0) = (A^{2n+1}x_0 + A^nC y_0 + A^{n-1}CBy_0 + \cdots + A^nCB^ny_0 + \cdots + CB^n y_0, B^{2n+1}y_0).
\]
It follows that $B^{2n+1}x_0 = 0$ and
\[A^{2n+1}x_0 + A^{2n}Cy_0 + A^{2n-1}CBy_0 + \cdots + A^nCB^n y_0 + \cdots + CB^{2n}y_0 = 0. \]

Then $y_0 \in N(B^{2n+1}) = N(B^n)$ and hence
\[A^{2n+1}x_0 + A^{2n}Cy_0 + A^{2n-1}CBy_0 + \cdots + A^nCB^{n-1}y_0 = 0, \]
which means that $A^{n+1}[A^{n}x_0 + A^{n-1}Cy_0 + A^{n-2}CBy_0 + \cdots + CB^{n-1}y_0] = 0$, and hence
\[A^{n}x_0 + A^{n-1}Cy_0 + A^{n-2}CBy_0 + \cdots + CB^{n-1}y_0 \in N(A^{n+1}) = N(A^n). \]

Then $A^{2n}x_0 + A^{2n-1}Cy_0 + A^{2n-2}CBy_0 + \cdots + A^nCB^{n-1}y_0 = 0$.

Now we get that
\[(A^{2n}x_0 + A^{2n-1}Cy_0 + \cdots + A^nCB^{n-1}y_0 + A^{n-1}CB^n y_0 + \cdots + CB^{2n-1}y_0, B^{2n}y_0) = 0, \]
that is, $M^2_Cu_0 = 0$ and hence $u_0 \in N(M^2_C)$. Then $N(M^{2n+1}_C) = N(M^{2n}_C)$, and hence M_C has finite ascent.

2) Secondly, we will prove that for any $C \in B(K, H)$, M_C has finite descent. We will prove that $R(M^{2n}_C) = R(M^{2n+1}_C)$, so we need to prove that $R(M^{2n}_C) \subseteq R(M^{2n+1}_C)$.

For any $u_0 \in R(M^{2n}_C)$, there exist $x \in H$ and $y \in K$ such that $u_0 = M^{2n}_C(x, y)$, that is,
\[u_0 = (A^{2n}x + A^{2n-1}Cy + A^{2n-2}CBy + \cdots + CB^{2n-1}y, B^{2n}y). \]

By $R(B^{2n}) = R(B^{2n+1})$, there exists $y_0 \in K$ such that $B^{2n}y = B^{2n+1}y_0$, then $y - By_0 \in N(B^{2n}) = N(B^n)$. Suppose $y = By_0 + y_1$, where $y_1 \in N(B^n)$. Then
\[
u_0 = (A^{2n}x + A^{2n-1}Cy_0 + A^{2n-2}CBy_0 + \cdots + A^nCB^{n-1}y_0 + A^{n-1}CB^n y_0 + A^{n-2}CB^{n+1}y_0 + \cdots + CB^{2n}y_0, B^{2n+1}y_0) = (A^{2n}x + A^{2n-1}Cy_0 + A^{2n-2}CBy_0 + \cdots + CB^{2n}y_0, B^{2n+1}y_0),
\]
\[= A^{2n-1}Cy_1 + A^{2n-2}CBy_1 + \cdots + A^nCB^{n-1}y_1 - A^nCy_0 + A^{n}Cy_0 = A^n(A^{n}x + A^{n-1}Cy_1 + A^{n-2}CBy_1 + \cdots + CB^{n-1}y_1 - A^nCy_0) \in R(A^n) = R(A^{2n+1}). \]

Then there exists $x_0 \in H$ such that
\[A^{2n}x + A^{2n-1}Cy_1 + A^{2n-2}CBy_1 + \cdots + A^nCB^{n-1}y_1 - A^nCy_0 = A^{2n+1}x_0. \]

Thus
\[u_0 = (A^{2n+1}x_0 + A^{2n}Cy_0 + A^{2n-1}CBy_0 + \cdots + CB^{2n}y_0, B^{2n+1}y_0) = M^{2n+1}_C(x_0, y_0) \in R(M^{2n+1}_C). \]
So $R(M_C^{2n}) = R(M_C^{2n+1})$ and hence M_C has finite descent. The proof is completed.

\begin{lemma}
\textbf{Lemma 2.2} For a given pair (A, B) of operators, if M_C is Drazin invertible for some $C \in B(K, H)$, then:
\begin{itemize}
 \item[(a)] $\alpha(A) < \infty$ and $\beta(A^*) < \infty$;
 \item[(b)] $\beta(B) < \infty$ and $\alpha(B^*) < \infty$.
\end{itemize}
\end{lemma}

\begin{proof}
Without loss of generality, we suppose that $0 \in \sigma(M_C)$. Suppose $\alpha(M_C) = \beta(M_C) = n < \infty$, then $\alpha(M_C^*) = \beta(M_C^*) = n$. Since $N(A^n) \oplus \{0\} \subseteq N(M_C^n)$, we get $\alpha(A) < \infty$. In order to prove $\beta(A^*) < \infty$, we only need to prove that $R(A^{*n}) = R(A^{*n+1})$. So we only need to prove that $R(A^{*n}) \subseteq R(A^{*n+1})$. For any $u \in R(A^{*n})$, let $u = A^{*n}x$, then $M_C^{*n}(x, 0) \in R(M_C^{*n}) = R(M_C^{*n+1})$. Thus there exists $(x_0, y_0) \in H \oplus K$ such that $(A^{*n}x, B^{*n-1}C^*x + \cdots + C^*A^{*-1}x) = M_C^{*n+1}(x_0, y_0) = (A^{*n+1}x_0, B^{*n+1}y_0 + B^{*n}C^*x_0 + \cdots + C^*A^{*n}x_0)$, then $u = A^{*n}x = A^{*n+1}x_0 \in R(A^{*n+1})$. Hence $\beta(A^*) < \infty$. By the same way, we can prove that $\beta(B) < \infty$ and $\alpha(B^*) < \infty$.
\end{proof}

\begin{lemma}
\textbf{Lemma 2.3} For a given pair (A, B) of operators, if M_C is Drazin invertible for some $C \in B(K, H)$, then A is Drazin invertible if and only if B is Drazin invertible.
\end{lemma}

\begin{proof}
Suppose that A is Drazin invertible. Then there exists $\varepsilon > 0$ such that $A - \lambda I$ and $M_C - \lambda I$ is invertible if $0 < |\lambda| < \varepsilon$. Thus we get that $B - \lambda I$ is invertible if $0 < |\lambda| < \varepsilon$. [5, P332, Theorem 10.5] asserts that B is Drazin invertible because $\beta(B) < \infty$. Conversely, if B is Drazin invertible, similarly, we know that A^* is Drazin invertible and hence A is Drazin invertible.
\end{proof}

\begin{remark}
\textbf{Remark 2.4} In Lemma 2.1, for every $C \in B(K, H)$, we have $\sigma_D(M_C) \subseteq \sigma_D(A) \cup \sigma_D(B)$. Sometimes, this inclusion is proper for given A and B. For example, let $A, B, C \in B(\ell^2)$ be defined by
\begin{align*}
A(x_1, x_2, x_3, \cdots) &= (0, x_1, x_2, x_3, \cdots), \\
B(x_1, x_2, x_3, \cdots) &= (x_2, x_3, x_4, \cdots), \\
C(x_1, x_2, x_3, \cdots) &= (x_1, 0, 0, \cdots).
\end{align*}
Then $\sigma(A) = \sigma(B) = \sigma_D(A) = \sigma_D(B) = \{ \lambda \in C : |\lambda| \leq 1 \}$. Since M_C is a unitary operator, then $\sigma_D(M_C) \subseteq \{ \lambda \in C : |\lambda| = 1 \}$. Thus $\sigma_D(M_C)$ is proper subset in $\sigma_D(A) \cup \sigma_D(B)$.

The following is our main theorem in this section. It says that the passage from $\sigma_D(A) \cup \sigma_D(B)$ to $\sigma_D(M_C)$ is accomplished by removing certain open subsets of $\sigma_D(A) \cap \sigma_D(B)$ from the former.

\begin{theorem}
\textbf{Theorem 2.5} For a given pair (A, B) of operators there is equality, for every $C \in B(K, H)$,
\begin{equation*}
\sigma_D(A) \cup \sigma_D(B) = \sigma_D(M_C) \cup \mathcal{G},
\end{equation*}
where \mathcal{G} is the union of certain holes in $\sigma_D(M_C)$ which happen to be subsets of $\sigma_D(A) \cap \sigma_D(B)$.
\end{theorem}
Proof} We first claim that, for every $C \in B(K, H)$,
\[(\sigma_D(A) \cup \sigma_D(B)) \setminus (\sigma_D(A) \cap \sigma_D(B)) \subseteq \sigma_D(M_C) \subseteq \sigma_D(A) \cup \sigma_D(B). \tag{1} \]
Indeed the second inclusion in (1) follows from Lemma 2.1. For the first inclusion, let $\lambda \in (\sigma_D(A) \cup \sigma_D(B)) \setminus (\sigma_D(A) \cap \sigma_D(B))$. Then $\lambda \in \sigma_D(A) \setminus \sigma_D(B)$ or $\lambda \in \sigma_D(B) \setminus \sigma_D(A)$. Lemma 2.3 asserts that $\lambda \in \sigma_D(M_C)$ for every $C \in B(K, H)$.

Next we claim that, for every $C \in B(K, H)$,
\[\eta(\sigma_D(M_C)) = \eta(\sigma_D(A) \cup \sigma_D(B)), \tag{2} \]
where ηK denote the “ polynomially convex hull ” of the compact set $K \subseteq C$. Since $\sigma_D(M_C) \subseteq \sigma_D(A) \cup \sigma_D(B)$ for every $C \in B(K, H)$, we need to prove that $\partial(\sigma_D(A) \cup \sigma_D(B)) \subseteq \partial \sigma_D(M_C)$. But since $\text{int } \sigma_D(M_C) \subseteq \text{int } (\sigma_D(A) \cup \sigma_D(B))$, it suffices to show that $\partial(\sigma_D(A) \cup \sigma_D(B)) \subseteq \sigma_D(M_C)$.

Let $\rho_D^+(A) = \{ \lambda \in C : \alpha(A - \lambda I) < \infty \text{ and } \beta(A^* - \lambda I) < \infty \}$ and $\rho_D^-(B) = \{ \lambda \in C : \beta(B - \lambda I) < \infty \text{ and } \alpha(B^* - \lambda I) < \infty \}$ and let $\sigma_D^+(A) = C \setminus \rho_D^+(A)$ and $\sigma_D^-(B) = C \setminus \rho_D^-(B)$. Then there are inclusions
\[\partial(\sigma_D(A) \cup \sigma_D(B)) \subseteq \partial \sigma_D(A) \cup \partial \sigma_D(B) \subseteq \sigma_D^+(A) \cup \sigma_D^-(B) \subseteq \sigma_D(M_C), \tag{3} \]
where the last inclusion follows from Lemma 2.2. For the second inclusion, if there exists $\lambda_0 \in (\partial \sigma_D(A) \cup \partial \sigma_D(B)) \setminus (\sigma_D^+(A) \cup \sigma_D^-(B))$, then there are two cases to consider.

Case 1. Suppose $\lambda_0 \in \partial \sigma_D(A)$. Then for any neighborhood of λ_0, there exists λ such that $A - \lambda I$ is Drazin invertible. Thus for any neighborhood of λ_0, there exists λ such that $A - \lambda I$ is invertible. And hence for any neighborhood of λ_0, there exists μ such that $A^* - \mu I$ is invertible. Since $\beta(A^* - \lambda_0 I) < \infty$, [5, P332, Theorem 10.5] tells us that $A^* - \lambda_0 I$ is Drazin invertible and hence $A - \lambda_0 I$ is Drazin invertible. It is in contradiction to the fact that $\lambda_0 \in \sigma_D(A)$.

Case 2. Suppose $\lambda_0 \in \partial \sigma_D(B)$. Similarly as in case 1, we induce a contradiction.

Then the second inclusion is true. Consequently, (2) asserts that the passage from $\sigma_D(M_C)$ to $\sigma_D(A) \cup \sigma_D(B)$ is the filling in certain holes in $\sigma_D(M_C)$. But since, by (1), $(\sigma_D(A) \cup \sigma_D(B)) \setminus \sigma_D(M_C)$ is contained in $\sigma_D(A) \cap \sigma_D(B)$, it follows that the filling in certain holes in $\sigma_D(M_C)$ should occur in $\sigma_D(A) \cap \sigma_D(B)$. The proof is completed.

Corollary 2.6 If $\sigma_D(A) \cap \sigma_D(B)$ has no interior points, then for every $C \in B(K, H)$,
\[\sigma_D(M_C) = \sigma_D(A) \cup \sigma_D(B). \tag{4} \]
In particular if either $A \in B(H)$ or $B \in B(K)$ is a Riesz operator, then (4) holds.

Corollary 2.7 If either A^* or B is hyponormal, then for every $C \in B(K, H)$, (4) holds.

Let $\rho_D^+(A) = \sigma(A) \setminus \sigma_D^+(A)$ and $\rho_D^+(B) = \sigma(B) \setminus \sigma_D^+(B)$. From Theorem 2.5, we can see that the holes in $\sigma_D(M_C)$ should lie in $\rho_D^+(A) \cap \rho_D^+(B)$. Thus we have:
Corollary 2.8 If $\rho^+_{D}(A) \cap \rho^-_{D}(B) = \emptyset$, then (4) holds for every $C \in B(K, H)$.

Lemma 2.9 If $\sigma(M_C) = \sigma(A) \cup \sigma(B)$ or $\sigma_w(M_C) = \sigma_w(A) \cup \sigma_w(B)$, then (4) holds.

Proof Suppose that $\sigma_w(M_C) = \sigma_w(A) \cup \sigma_w(B)$. If $M_C - \lambda_0I$ is Drazin invertible, then there exists $\varepsilon > 0$ such that $M_C - \lambda I$ is invertible and $B - \lambda I$ is surjective if $0 < |\lambda - \lambda_0| < \varepsilon$. Since λ is not in $\sigma_w(M_C) = \sigma_w(A) \cup \sigma_w(B)$, it follows that $B - \lambda I$ are Weyl. Then $B - \lambda I$ are invertible if $0 < |\lambda - \lambda_0| < \varepsilon$. Now we have proved that $\lambda_0 \in \iso \sigma(B) \cup \rho(B)$. [5, P332, Theorem 10.5] tells us that $B - \lambda_0I$ is Drazin invertible hence $B - \lambda_0I$ is Drazin invertible. Then λ_0 is not in $\sigma_D(A) \cup \sigma_D(B)$. If $\sigma(M_C) = \sigma(A) \cup \sigma(B)$, by the same way, we can prove the result. □

Corollary 2.10 If $\sigma_w(A) \cap \sigma_w(B)$ (or $\sigma(A) \cap \sigma(B)$) has no interior points, then (4) holds for every $C \in B(K, H)$.

Proof By Lemma 2.9 and Corollary 8 in [6] and Corollary 7 in [7], we get the result. □

3. Weyl’s theorem for 2×2 upper triangular operator matrices

H.Weyl[8] has shown that every hermitian operator $A \in B(H)$ satisfies the equality

$$\sigma(A) \setminus \sigma_w(A) = \pi_{00}(A)$$

where $\pi_{00}(A) = \{ \lambda \in \iso \sigma(A) : 0 < \dim N(A - \lambda I) < \infty \}$. Now we say Weyl’s theorem holds for $A \in B(H)$ if A satisfies the equality (5). If $\sigma_w(A) = \sigma_b(A)$, we say that Browder’s theorem holds for A. Clearly, Weyl’s theorem implies Browder’s theorem.

Let $\Phi_+(H)$ be the class of all $A \in \Phi_+(H)$ with $\ind(A) \leq 0$, and for any $A \in B(H)$, and let

$$\sigma_{ea}(A) = \{ \lambda \in C : A - \lambda I \text{ is not in } \Phi_+(H) \}$$

and $\sigma_{ab}(A) = \{ \lambda \in C : A - \lambda I \text{ is not an upper semi-Fredholm operator with finite ascent}\}$. We call $\sigma_{ea}(A)$ and $\sigma_{ab}(A)$ the essential approximate point spectrum and Browder essential approximate point spectrum respectively.

Let $\pi_{00}^a(A) = \{ \lambda \in \iso \sigma_a(A), 0 < \dim N(A - \lambda I) < \infty \}$. Similarly, we say that a-Weyl’s theorem holds for A if there is equality $\sigma_a(A) \setminus \sigma_{ea}(A) = \pi_{00}^a(A)$, and that a-Browder’s theorem holds for A if there is equality $\sigma_{ea}(A) = \sigma_{ab}(A)$.

Weyl’s theorem may or may not hold for a direct sum of operators for which Weyl’s theorem holds. Thus Weyl’s theorem may fail for upper triangular operator matrices. So does a-Weyl’s theorem. Weyl’s theorem for upper triangular operator matrices is more delicate in comparison with the diagonal matrices. In this section, we consider this question: If Weyl’s (a-Weyl’s) theorem holds for \(\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \), when does it hold for \(\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \)? We begin with

Theorem 3.1 If $\sigma_D(A) \cap \sigma_D(B)$ (or $\sigma(A) \cap \sigma(B)$) has no interior points, then for every $C \in B(K, H)$,

(a) Browder’s theorem holds for \(\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \) \implies Browder’s theorem holds for \(\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \);
(b) a-Browder’s theorem holds for $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ \iff a-Browder’s theorem holds for $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$.

Proof (a) Suppose $M_C - \lambda_0I$ is Weyl. Then there exists $\varepsilon > 0$ such that $M_C - \lambda I$ is Weyl and hence $A - \lambda I$ is upper semi-Fredholm operator and $B - \lambda I$ is lower semi-Fredholm operator, and $A - \lambda I$ is Weyl if and only if $B - \lambda I$ is Weyl if $|\lambda - \lambda_0| < \varepsilon$.

Case 1. Suppose that $\lambda_0 \in \partial \sigma_D(A)$ or λ_0 is not in $\sigma_D(A)$. Then in any neighborhood of λ_0, there exists λ such that $A - \lambda I$ is Drazin invertible and hence in any neighborhood of λ_0, there exists μ such that $A - \mu I$ is invertible. Since $A - \lambda_0 I$ is upper semi-Fredholm operator, by perturbation theory of upper semi-Fredholm, it follows that $A - \lambda_0 I$ is Browder. Then $B - \lambda_0 I$ is Weyl and hence $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} - \lambda_0 I$ is Weyl. Browder’s theorem holds for $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, then $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} - \lambda_0 I$ is Browder. Thus $A - \lambda_0 I$ and $B - \lambda_0 I$ are Drazin invertible. Lemma 2.1 tells us that $M_C - \lambda_0 I$ is Drazin invertible. Since $M_C - \lambda_0 I$ is Weyl, we get that $M_C - \lambda_0 I$ is Browder.

Case 2. Suppose that $\lambda_0 \in \text{int} \sigma_D(A)$. Since $\sigma_D(A) \cap \sigma_D(B)$ has no interior points, we know that $\lambda_0 \in \partial \sigma_D(B)$ or λ_0 is not in $\sigma_D(B)$. The following proof is the same as the proof in Case 1.

Now we have proved that $\sigma_a(M_C) = \sigma_b(M_C)$ for every $C \in B(K,H)$, which means that Browder’s theorem holds for M_C for every $C \in B(K,H)$.

(b) Suppose that $M_C - \lambda_0 I \in \Phi_+(H \oplus K)$. Then $A - \lambda_0 I \in \Phi_+(H)$.

Case 1. λ_0 is not in $\sigma_D(A)$ or $\lambda_0 \in \partial \sigma_D(A)$. Similarly to the proof in case 1 in (a), we know that $A - \lambda_0 I$ is Browder. By perturbation theory of semi-Fredholm operator, there exists $\varepsilon > 0$ such that $M_C - \lambda I \in \Phi_+(H \oplus K)$ with $N(M_C - \lambda I) \subseteq \cap_{n=1}^{\infty} R[(M_C - \lambda I)^n]$ and $A - \lambda I$ is invertible if $0 < |\lambda - \lambda_0| < \varepsilon$. Then $B - \lambda I \in \Phi_+(K)$ and hence $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} - \lambda I \in \Phi_+(H \oplus K)$. a-Browder’s theorem holds for $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, then $\alpha(A - \lambda I) < \infty$ and $\alpha(B - \lambda I) < \infty$ hence $\alpha(M_C - \lambda I) < \infty$. [9, Lemma 3.4] asserts that $N(M_C - \lambda I) = N(M_C - \lambda I) \cap \cap_{n=1}^{\infty} R[(M_C - \lambda I)^n] = \{0\}$ if $0 < |\lambda - \lambda_0| < \varepsilon$. Now we have that $\lambda_0 \in \text{iso} \sigma_a(M_C)$. Then M_C has single valued extension property in λ_0. [10, Theorem 15] tells us that $\alpha(M_C - \lambda_0 I) < \infty$.

Case 2. If $\lambda_0 \in \text{int} \sigma_D(A)$, then λ_0 is not in $\sigma_D(B)$ or $\lambda_0 \in \partial \sigma_D(B)$. By perturbation theory of upper semi-Fredholm, there exists $\varepsilon > 0$ such that $M_C - \lambda I \in \Phi_+(H \oplus K)$ with $N(M_C - \lambda I) \subseteq \cap_{n=1}^{\infty} R[(M_C - \lambda I)^n]$, $n(M_C - \lambda I)$ is constant, and $A - \lambda I \in \Phi_+(H)$ if $0 < |\lambda - \lambda_0| < \varepsilon$. There exists $\lambda_1 \in C$ such that $B - \lambda_1 I$ is invertible and $0 < |\lambda_1 - \lambda_0| < \varepsilon$. Then $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} - \lambda_1 I \in \Phi_+(H \oplus K)$. Similarly to the case 1 in (b), $M_C - \lambda_1 I$ is bounded below. Therefore $M_C - \lambda I$ is bounded below because $n(M_C - \lambda I)$ is constant if $0 < |\lambda - \lambda_0| < \varepsilon$. It follows that $\alpha(M_C - \lambda_0 I) < \infty$.

Then $\sigma_{ea}(M_C) = \sigma_{ab}(M_C)$, which means that a-Browder’s theorem holds for M_C for every $C \in B(K,H)$. \square

We call A is isoloid if $\text{iso} \sigma(A) \subseteq \sigma_p(A)$, where $\sigma_p(A)$ is the set of all point spectrums. And
we call A approximate isoloid (abbrev. a-isoloid) if $iso\, \sigma_{a}(A) \subseteq \sigma_{p}(A)$. Clearly, a-isoloid implies isoloid.

Remark 3.2 If $\sigma_{w}(A) \cap \sigma_{w}(B)$ had no interior points, then (a) in Theorem 3.1 is also true. But Theorem 3.1 may fail for “a-Weyl’s theorem” even with the additional assumption that a-Weyl’s theorem holds for A and B and both A and B are a-isoloid. To see this, let A, B, $C \in B(\ell_{2})$ are defined by

$$A(x_{1}, x_{2}, x_{3}, \cdots) = (0, x_{1}, 0, x_{2}, 0, x_{3}, \cdots),$$

$$B(x_{1}, x_{2}, x_{3}, \cdots) = (0, x_{2}, 0, x_{4}, 0, x_{6}, \cdots),$$

$$C(x_{1}, x_{2}, x_{3}, \cdots) = (0, 0, 0, \frac{1}{3}x_{3}, 0, \frac{1}{5}x_{5}, \cdots).$$

Then $\sigma_{a}(A) = \sigma_{ea}(A) = T$, $\sigma_{D}(A) = D$, $\pi_{00}^{a}(A) = \emptyset$ and $\sigma_{a}(B) = \sigma_{ea}(B) = \{0, 1\}$, $\sigma_{D}(B) = \pi_{00}^{a}(B) = \emptyset$, which says that a-Weyl’s theorem holds for A and B, both A and B are a-isoloid, and $\sigma_{D}(A) \cap \sigma_{D}(B)$ ($\sigma_{w}(A) \cap \sigma_{w}(B)$) has no interior points. Also a straightforward calculation shows that

$$\sigma_{a}\left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right) = \sigma_{ea}\left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right) = T \cup \{0\}, \quad \pi_{00}^{a}\left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right) = \emptyset,$$

$$\sigma_{a}(M_{C}) = \sigma_{ea}(M_{C}) = T \cup \{0\}, \quad \pi_{00}^{a}(M_{C}) = \{0\}.$$

Then a-Weyl’s theorem holds for $\left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right)$, but fails for $\left(\begin{array}{cc} A & C \\ 0 & B \end{array}\right)$.

But for Weyl’s theorem, we have:

Theorem 3.3 If $\sigma_{D}(A) \cap \sigma_{D}(B)$ (or $\sigma_{w}(A) \cap \sigma_{w}(B)$) has no interior points and if A is an isoloid operator for which Weyl’s theorem holds, then for every $C \in B(K, H)$,

\[\text{Weyl’s theorem holds for } \left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right) \implies \text{Weyl’s theorem holds for } \left(\begin{array}{cc} A & C \\ 0 & B \end{array}\right).\]

Proof Theorem 3.1 gives that $\sigma(M_{C}) \setminus \sigma_{w}(M_{C}) \subseteq \pi_{00}(M_{C})$. For the reverse inclusion, suppose that $\lambda_{0} \in \pi_{00}(M_{C})$. Then there exists $\varepsilon > 0$ such that $M_{C} - \lambda I$ is invertible and hence $A - \lambda I$ is bounded below and $B - \lambda I$ is surjective if $0 < |\lambda - \lambda_{0}| < \varepsilon$. $\sigma_{D}(A) \cap \sigma_{D}(B)$ (or $\sigma_{w}(A) \cap \sigma_{w}(B)$) has no interior points, then $\sigma_{D}(M_{C}) = \sigma_{D}(A) \cup \sigma_{D}(B)$. Since λ is not in $\sigma_{D}(M_{C}) = \sigma_{D}(A) \cup \sigma_{D}(B)$, it follows that $A - \lambda I$ and $B - \lambda I$ are Drazin invertible. Thus $A - \lambda I$ and $B - \lambda I$ are invertible, which means that $\lambda_{0} \in iso\, \sigma\left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right)$. The following proof is same as the proof in Theorem 2.4 in [11].

Remark 3.4 Theorem 3.3 in this paper is not compatible with Theorem 2.4 in [11]. For example:

(a) Let $A \in B(\ell_{2})$ be defined by

\[A(x_{1}, x_{2}, x_{3}, \cdots) = (x_{2}, x_{4}, x_{6}, \cdots),\]
and let $B = A - 2I$. Then

(I) $\sigma_D(A) = D$, $\sigma_D(B) = \{ \lambda \in C : |\lambda + 2| \leq 1 \}$. Then $\sigma_D(A) \cap \sigma_D(B)$ has no interior points;

(II) $\sigma_e(A) = D$, $\sigma_e(B) = \{ \lambda \in C : |\lambda + 2| = 1 \}$ and $\sigma_e(B) = \{ \lambda \in C : |\lambda + 2| \leq 1 \}$, where $\sigma_e(A) = \{ \lambda \in C : A - \lambda I$ is not lower semi-Fredholm operator $\}$. Then both $SP(A)$ and $SP(B)$ have pseudoholes;

(III) $\sigma(A) = \sigma_w(A) = D$ and $\pi_{00}(A) = \emptyset$, then A is isoloid and Weyl’s theorem holds for A;

(IV) $\sigma \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \sigma_w \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = D$ and $\pi_{00} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \emptyset$, then Weyl’s theorem holds for $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.

By Theorem 3.3 in this note, Weyl’s theorem holds for M_C for every $C \in B(\ell_2, \ell_2)$. But using Theorem 2.4 in [11], we do not know whether Weyl’s theorem holds for M_C for every $C \in B(K, H)$.

(b) Let $T_1, T_2, B \in B(\ell_2)$ are defined by

$$T_1(x_1, x_2, x_3, \cdots) = (0, x_1, 0, x_2, 0, x_3, 0, \cdots),$$

$$T_2(x_1, x_2, x_3, \cdots) = (x_2, x_4, x_6, \cdots),$$

and

$$B(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots).$$

Let $A = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$.

Then

(I) $\sigma_D(A) = D$, $\sigma_D(B) = D$. Then $\sigma_D(A) \cap \sigma_D(B)$ has interior points;

(II) $\sigma_e(A) = \sigma_{SF_+}(A) = \sigma_{SF_+}(A) = D$, $\sigma_e(B) = \sigma_{SF_+}(B) = \sigma_{SF_+}(B) = T$, then both $SP(A)$ and $SP(B)$ have no pseudoholes;

(III) $\sigma(A) = \sigma_w(A) = D$, $\pi_{00}(A) = \emptyset$. Then A is isoloid and Weyl’s theorem holds for A;

(IV) $\sigma \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \sigma_w \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = D$, $\pi_{00} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \emptyset$. Then Weyl’s theorem holds for $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.

Using Theorem 2.4 in [11], we know that for every $C \in B(\ell_2, \ell_2 \otimes \ell_2)$, Weyl’s theorem holds for M_C. But using Theorem 3.3 in this paper, we do not know whether Weyl’s theorem holds for M_C for every $C \in B(\ell_2, \ell_2 \otimes \ell_2)$.

For a-Weyl’s theorem, similarly to the prove of Theorem 3.3, we have that:

Theorem 3.5 If $\sigma_D(A)$ (or $\sigma(A)$) has no interior points, and if A is an a-isoloid operator for which a-Weyl’s theorem holds, then for every $C \in B(K, H)$,

$$a\text{-Weyl’s theorem holds for } \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \Rightarrow a\text{-Weyl’s theorem holds for } \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}.$$
References:

Drazin 谱和算子矩阵的 Weyl 定理

曹小红 1,2, 郭啟正 1, 孟彬 1

1. 北京大学数学科学学院应用数学实验室，北京 100871
2. 陕西师范大学数学与信息科学学院，陕西 西安 710062

摘要: $A \in B(H)$ 称为是一个 Drazin 可逆的算子，若 A 有有限的升标和降标，用 $\sigma_D(A) = \{ \lambda \in C : A - \lambda I$ 不是 Drazin 可逆的 $\}$ 表示 Drazin 谱集。本文证明了对于 Hilbert 空间的有限维子子空间 C，算子 A 的 Drazin 谱是定义在 C 上的有限维子空间 $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ 的子空间 $\sigma_D(M_C)$ 的道路需要从前面算子矩阵 A 中的有限子空间移动 $\sigma_D(A) \cap \sigma_D(B)$ 中的一定子空间，即有等式:

$$\sigma_D(A) \cup \sigma_D(B) = \sigma_D(M_C) \cup \mathcal{G},$$

其中 \mathcal{G} 为 $\sigma_D(M_C)$ 中一定子空间的并，且为 $\sigma_D(A) \cap \sigma_D(B)$ 的子空间。对于 $\sigma_D(A) \cap \sigma_D(B)$ 的子空间 \mathcal{G} 可以被选择为 A 的 Weyl 定理，利用 Drazin 谱，我们研究了 2×2 上三角算子矩阵的 Weyl 定理。Browder 定理，a-Weyl 定理和 a-Browder 定理。

关键词: Weyl 定理；a-Weyl 定理；Browder 定理；a-Browder 定理；Drazin 谱。