A Conceivable Inequality for Analytic Functions and Its Application

HSU Leetsch Charles¹, WU Kang²
(1. Dept. of Math., Dalian University of Technology, Liaoning 116024, China;
2. Math. Sci. School, South China Normal University, Guangzhou 510631, China)

Abstract: This brief note presents an easily conceivable inequality for analytic functions. As an application, a function-theoretic proposition involving the Fundamental Theorem of Algebra (FTA) is deduced immediately.

Key words: conceivable inequality; analytic function; Fundamental Theorem of Algebra.
MSC(2000): 30D12
CLC number: O174.52

Without loss of generality, a non-constant analytic function \(f(z) \) defined for \(|z| < \rho \) in the Gaussian plane \(\mathbb{C} \) may be written in the form
\[
f(z) = a + bz^m + cz^{m+1} + \cdots, \tag{1}
\]
where \(b \neq 0 \) and \(m \geq 1 \).

Proposition 1 Let \(f(t) \) be defined by (1) with \(f(0) = a \neq 0 \), then for every sufficiently small \(\delta > 0 \) there holds the inequality
\[
|f((-a\delta/b)^{1/m})| < |f(0)|, \tag{2}
\]
where \((-a\delta/b)^{1/m}\) may take any of the \(m \) distinct roots for \(m \geq 2 \).

Proof Solving the equation \(bz^m = -a\delta \), we get \(z = (-a\delta/b)^{1/m} \). Rewrite \(f(z) \) in the form
\[
f(z) = a + bz^m + bz^m g(z), \tag{1}^*
\]
where \(g(z) = (c/b)z + \cdots \) is also an analytic function so that \(|g(z)| \to 0 \) as \(|z| \to 0 \). Thus for every sufficiently small \(\delta \) with \(0 < \delta < 1 \), we could have
\[
|g((-a\delta/b)^{1/m})| < \frac{1}{2}.
\]
Consequently, the following estimation holds via (1)*
\[
|f((-a\delta/b)^{1/m})| \leq |a - a\delta| + |(-a\delta)g((-a\delta/b)^{1/m})| < |a|(1 - \delta) + |a|\delta \cdot \frac{1}{2}
= |a|(1 - \frac{\delta}{2}) < |a| = |f(0)|.
\]

Received date: 2006-04-25
Hence the Inequality (2) is always valid for small $\delta > 0$.

Evidently, Inequality (2) may be stated in a more general form: If $f(z)$ is non-constant and analytic in a neighborhood of $z_0 \in \mathbb{C}$, with $f(z_0) = a \neq 0$, then $f(z_0 + z)$ may be written in a similar form, as that of (1),

$$f(z_0 + z) = f(z_0) + bz^m + cz^{m+1} + \cdots, \quad (m \geq 1),$$

and consequently the following inequality

$$|f(z_0 + (-a\delta/b)^{1/m})| < |f(z_0)|$$

holds for every sufficiently small $\delta (0 < \delta < 1)$.

In what follows suppose that $F(z)$ is non-constant and analytic in a domain $D \subset \mathbb{C}$. Then the form of Inequality (4) shows that for every $z_0 \in D$ with $F(z_0) \neq 0$, the value $|F(z_0)| > 0$ can never become an absolute minimum $\min_z |F(z)|$. This implies that if $\min_z |F(z)|$ really exists and is attained at $z = z_0 \in D$, then it must be that $\min_z |F(z)| = |F(z_0)| = 0$. Accordingly, we get the following useful and well-known proposition as a consequence of (4).

Proposition 2 Let $F(z)$ be a non-constant analytic function in $D \subset \mathbb{C}$, and let $|F(z)|$ attain an absolute minimum at $z_0 \in D$. Then it must be that

$$\min_z |F(z)| = |F(z_0)| = 0.$$

In words, z_0 must be a zero of $F(z)$.

In particular, if $F(z)$ is a polynomial in z of degree $n(n \geq 1)$, then the obvious fact that $|F(z)| \to \infty (|z| \to \infty)$ implies that $|F(z)|$ should attain $\min_z |F(z)|$ at certain $z_0 \in \mathbb{C}$. Thus by Proposition 2 we must have $F(z_0) = 0$. This is what so-called the well-known existence theorem first proved by Gauss (1799):

FTA Any polynomial equation $F(z) = 0$ of degree $n(n \geq 1)$ has at least a root $z_0 \in \mathbb{C}$, viz.

$$F(z_0) = 0.$$

Note that for the example $F(z) = e^z$ we have $|e^z| = |e^{x+iy}| = e^x > 0$ for $z = x + iy \in \mathbb{C}$. This shows that the second condition in Proposition 2 cannot be omitted.

Remark 1 Recall that in the complex analysis a limit process such as $f(z) \to A \quad (z \to a \in \mathbb{C})$ involves that both z and $f(z)$ could tend to their limits in various possible directions in \mathbb{C}. In particular, if $f(z) \to f(a) \neq 0 \quad (z \to a)$ and if the mode of passage $z \to a$ could be so chosen that $|f(z)| \uparrow |f(a)|$, then we shall have $|f(z)| < |f(a)|$ for all those z sufficiently close to a. Observing in this way, we see that (2) and (4) are geometrically comprehensible.

Remark 2 For the polynomial equation $F(z) = 0$ of degree $n(\geq 1)$, the truth of (FTA) is just based on the fact that $\min_z |F(z)|$ really exists and cannot take any positive value such as $\min_z |F(z)| = |F(z_0)| > 0$. Looking in this way, we may say that the truth of (4) or (2) is the basic source for the truth of (FTA).
Remark 3 As usual, for the nth degree polynomial $|F(z)|$ we may denote $|F(z)| = |F(x+iy)| = |u(x, y) + iv(x, y)| = \sqrt{u(x, y)^2 + v(x, y)^2}$. Thus the assertion of (FTA), $\min_z |F(z)| = |F(z_0)| = |F(x_0 + iy_0)| = 0$, just means that (x_0, y_0) is the intersection point of the two plane curves defined by $u(x, y)=0$ and $v(x, y)=0$, respectively. As is known, Gauss' famous doctoral thesis (1799) first proved this fact. Certainly, the existence of such a point $(x_0, y_0) \leftrightarrow x_0 + iy_0 = z_0$ can also be inferred from Proposition 2 or (4) directly.

References: