Note on Convergence Theorems of Iterative Sequences for Asymptotically Non-Expansive Mapping in a Uniformly Convex Banach Space

TANG Yu-chao, LIU Li-wei
(Department of Mathematics, Nanchang University, Jiangxi 330047, China)
(E-mail: hhaao1331@yahoo.com.cn)

Abstract: In this paper, we approximate fixed point of asymptotically nonexpansive mapping \(T \) on a closed, convex subset \(C \) of a uniformly convex Banach space. Our argument removes the boundedness assumption on \(C \), generalizing theorems of Liu and Xue.

Key words: asymptotically nonexpansive mapping; modified Ishikawa iterative sequence; fixed points.
MSC(2000): 47H09; 47H10
CLC number: O177.91; O174.41

1. Introduction and preliminaries

Let \(E \) be a real normed linear space, \(E^* \) its dual, and \(\langle \cdot, \cdot \rangle \) the generalized duality pairing between \(E \) and \(E^* \). Let \(J : E \to 2^{E^*} \) be the normalized duality mapping defined for each \(x \in E \) by

\[
J(x) = \{ f \in E^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2 \}.
\]

It is well known that if \(E \) is smooth then \(J \) is single-valued.

Definition 1.1 Let \(T : D(T) \subset E \to E \) be a mapping. \(T \) is said to be asymptotically nonexpansive if there exists a sequence \(\{k_n\} \subset [1, +\infty) \) with \(\lim_{n \to \infty} k_n = 1 \) such that

\[
\|T^n x - T^n y\| \leq k_n \|x - y\|, \quad \forall x, y \in D(T), n = 1, 2, 3, \ldots.
\]

It is well known that if \(T \) is nonexpansive, then \(T \) is asymptotically nonexpansive with a constant sequence \(\{1\} \).

Definition 1.2 Let \(C \) be a nonempty convex subset of \(E \), \(T : C \to C \) be a mapping and \(x_1 \in C \) be a given point. If sequences \(\{x_n\}, \{y_n\} \subset C \) are defined by

\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n y_n, \quad y_n = (1 - \beta_n)x_n + \beta_n T^n x_n, n \geq 1,
\]

Received date: 2005-09-13; Accepted date: 2007-07-02
Foundation item: the National Natural Science Foundation of China(10561007); the Natural Science Foundation of Jiangxi Province(0411036).
then \(\{x_n\} \) is called the modified Ishikawa iterative sequence of \(T \), where \(\{\alpha_n\}, \{\beta_n\} \subset [0, 1] \), with \(0 < \delta \leq \alpha_n, \beta_n \leq 1 - \delta < 1 \).

In (1.1) if \(\beta_n = 0 \) for all \(n \geq 0 \), then \(y_n = x_n \). The sequence \(\{x_n\} \) defined by

\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_nT^n x_n, \quad n \geq 1
\]

is called the modified Mann iterative sequence of \(T \), where \(\{\alpha_n\} \subset [0, 1] \), with \(0 < \delta \leq \alpha_n \leq 1 - \delta < 1 \).

The concept of asymptotically nonexpansive mapping was first introduced and studied by Goebel and Kirk\(^1\) in 1972. They proved that if \(D \) is a nonempty bounded closed convex subset of a uniformly convex Banach space \(E \), then every asymptotically nonexpansive selfmapping \(T \) defined on \(D \) has a fixed point.

In 2000, Liu and Xue\(^2\) proved the convergence of iterative sequence in a uniformly convex Banach space for asymptotically nonexpansive mappings. They got the following main theorem.

Theorem LX Let \(T \) be a completely continuously asymptotically nonexpansive mapping with sequence \(\{k_n\} \) in a bounded closed convex subset \(C \) of a uniformly convex Banach space and \(k_n \geq 1, \sum_{n=1}^{\infty} (k_n - 1) < +\infty, x_1 \in C \), \(\{x_n\} \) defined by (1.1), where \(\{\alpha_n\} \) and \(\{\beta_n\} \) satisfy \(0 < \alpha \leq \alpha_n \leq \frac{1}{2}, 0 \leq \beta_n \leq \frac{1}{2} \) and \(\lim_{n \to \infty} \beta_n = 0 \), then the iterative sequence \(\{x_n\} \) converges to a fixed point of \(T \).

In this paper, our results generalize Theorem LX, in that we remove the assumption that \(C \) is bounded and we approximate fixed point of asymptotically nonexpansive mapping \(T \) on a closed, convex subset \(C \) of a uniformly convex Banach space.

We shall need the following results.

Lemma 1.1\(^3,4\) Let \(\{a_n\}, \{b_n\} \) and \(\{c_n\} \) be sequences of nonnegative real numbers satisfying the inequality

\[
a_{n+1} \leq (1 + b_n)a_n + c_n, \quad \forall n \geq 1.
\]

If \(\sum_{n=1}^{\infty} b_n < +\infty \) and \(\sum_{n=1}^{\infty} c_n < +\infty \), then \(\lim_{n \to \infty} a_n \) exists. In particular, if \(c_n \equiv 0 \), then \(\lim_{n \to \infty} a_n \) also exists.

Lemma 1.2\(^5\) Let \(\{\rho_n\}_{n=1}^{\infty} \) and \(\{\sigma_n\}_{n=1}^{\infty} \) be sequences of nonnegative real numbers satisfying the inequality

\[
\rho_{n+1} \leq \rho_n + \sigma_n, \quad n \geq 1.
\]

If \(\sum_{n=1}^{\infty} \sigma_n < +\infty \), then \(\lim_{n \to \infty} \rho_n \) exists. In particular, if \(\{\rho_n\}_{n=1}^{\infty} \) has a subsequence which converges strongly to zero, then \(\lim_{n \to \infty} \rho_n = 0 \).

Lemma 1.3\(^6\) Suppose that \(E \) is a uniformly convex Banach space and \(0 < p \leq t_n \leq q < 1 \) for all positive integers \(n \). Also suppose that \(\{x_n\} \) and \(\{y_n\} \) are two sequences of \(E \) such that \(\limsup_{n \to \infty} \|x_n\| \leq r \), \(\limsup_{n \to \infty} \|y_n\| \leq r \), \(\lim_{n \to \infty} \|tx_n + (1 - t_n)y_n\| = r \) hold for some \(r \geq 0 \). Then \(\lim_{n \to \infty} \|x_n - y_n\| = 0 \).
2. Main results

Lemma 2.1 Let E be a real normed linear space, C be a nonempty convex subset of E, and $T : C \to C$ be an asymptotically nonexpansive mapping with a real sequence $\{k_n\}$ in $[1, +\infty)$ such that $\sum_{n=1}^{\infty}(k_n - 1) < +\infty$. Let $x_1 \in C$, $\{x_n\}$ be the modified Ishikawa iterative sequence defined by (1.1). If $F(T) \neq \emptyset$, then for any given $q \in F(T)$, $\lim_{n \to \infty} \|x_n - q\|$ exists.

Proof For any given $q \in F(T)$, using iterates (1.1), we have

$$
\|x_{n+1} - q\| = \|(1 - \alpha_n)(x_n - q) + \alpha_n(T^n y_n - q)\|
\leq (1 - \alpha_n)\|x_n - q\| + \alpha_n k_n \|y_n - q\|. \quad (2.1)
$$

Otherwise,

$$
\|y_n - q\| = \|(1 - \beta_n)(x_n - q) + \beta_n(T^n x_n - q)\|
\leq (1 - \beta_n)\|x_n - q\| + \beta_n k_n \|x_n - q\|
= [1 + (k_n - 1)\beta_n]\|x_n - q\|
\leq k_n \|x_n - q\|. \quad (2.2)
$$

Substituting (2.2) into (2.1), we have

$$
\|x_{n+1} - q\| \leq (1 - \alpha_n)\|x_n - q\| + \alpha_n k_n^2 \|x_n - q\|
= [1 + \alpha_n(k_n^2 - 1)]\|x_n - q\|. \quad (2.3)
$$

Set $a_n = \|x_n - q\|, b_n = \alpha_n(k_n^2 - 1) = \alpha_n(k_n + 1)(k_n - 1)$. Then Inequality (2.3) is equal to

$$
a_{n+1} \leq (1 + b_n)a_n.
$$

Since $\sum_{n=1}^{\infty}(k_n - 1) < +\infty$, $\{k_n\}$ is a bounded sequence and $\alpha_n \in [0, 1]$, so $\sum_{n=1}^{\infty} b_n < +\infty$. By Lemma 1.1, we know $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \|x_n - q\|$ exists.

Lemma 2.2 Let E be a uniformly convex Banach space, C be a nonempty convex subset of E, and $T : C \to C$ be an asymptotically nonexpansive mapping with a real sequence $\{k_n\}$ in $[1, +\infty)$ such that $\sum_{n=1}^{\infty}(k_n - 1) < +\infty$. Let $x_1 \in C$, $\{x_n\}$ be the modified Ishikawa iterative sequence defined by (1.1). If $F(T) \neq \emptyset$, then $\lim_{n \to \infty} \|x_n - Tx_n\| = 0$.

Proof Since $F(T) \neq \emptyset$, let $q \in F(T)$. By Lemma 2.1, we know $\lim_{n \to \infty} \|x_n - q\|$ exists. Let $\lim_{n \to \infty} \|x_n - q\| = c, c \geq 0$.

Step 1. We prove $\lim_{n \to \infty} \|x_n - T^n x_n\| = 0$.

From (1.1), we have

$$
\|y_n - q\| = \|(1 - \beta_n)(x_n - q) + \beta_n(T^n x_n - T^n q)\|
\leq [1 + (k_n - 1)\beta_n]\|x_n - q\|
\leq k_n \|x_n - q\|.
$$
Taking \(\lim \sup \) on both sides of the above inequality, we have

\[
\lim \sup_{n \to \infty} \| y_n - q \| \leq c. \tag{2.4}
\]

Next, consider \(\| T^n y_n - q \| \leq k_n \| y_n - q \| \). Taking \(\lim \sup \) on both sides of the above inequality and then using (2.4), we get that

\[
\lim \sup_{n \to \infty} \| T^n y_n - q \| \leq c.
\]

Furthermore, \(\lim_{n \to \infty} \| x_{n+1} - q \| = c \) means that

\[
\lim_{n \to \infty} \| (1 - \alpha_n)(x_n - q) + \alpha_n(T^n y_n - q) \| = c.
\]

Hence applying Lemma 1.3, we obtain that

\[
\lim_{n \to \infty} \| x_n - T^n y_n \| = 0.
\]

Next,

\[
\| x_n - q \| \leq \| x_n - T^n y_n \| + \| T^n y_n - q \| \leq \| x_n - T^n y_n \| + k_n \| y_n - q \|
\]

gives that

\[
c \leq \lim \inf_{n \to \infty} \| y_n - q \| \leq \lim \sup_{n \to \infty} \| y_n - q \| \leq c.
\]

That is \(\lim_{n \to \infty} \| y_n - q \| = c \). Now \(\lim_{n \to \infty} \| y_n - q \| = c \) can be expressed as

\[
\lim_{n \to \infty} \| (1 - \beta_n)(x_n - q) + \beta_n(T^n x_n - q) \| = c.
\]

Observe that \(\| T^n x_n - q \| \leq k_n \| x_n - q \| \). Taking \(\lim \sup \) on both the sides in the above inequality, we have \(\lim \sup_{n \to \infty} \| T^n x_n - q \| \leq c \). So again by Lemma 1.3, we have \(\lim_{n \to \infty} \| x_n - T^n x_n \| = 0. \)

Step 2. We prove \(\lim_{n \to \infty} \| x_n - T x_n \| = 0. \)

For convenience, let \(\rho_n = \| x_n - T^n x_n \|. \)

Now consider

\[
\| x_n - x_{n+1} \| = \| \alpha_n(x_n - T^n y_n) \| \\
\leq \alpha_n \| x_n - T^n x_n \| + \alpha_n \| T^n x_n - T^n y_n \| \\
\leq \alpha_n \| x_n - T^n x_n \| + \alpha_n k_n \| x_n - y_n \| \\
\leq \alpha_n \| x_n - T^n x_n \| + \alpha_n \beta_n k_n \| x_n - T^n x_n \| \\
= \alpha_n \rho_n + \alpha_n \beta_n k_n \rho_n.
\]

That is

\[
\| x_n - x_{n+1} \| \leq \alpha_n \rho_n + \alpha_n \beta_n k_n \rho_n.
\]
Next consider
\[
\|x_{n+1} - Tx_{n+1}\| \leq \|x_{n+1} - T^{n+1}x_{n+1}\| + \|T^{n+1}x_{n+1} - Tx_{n+1}\|
\]
\[
\leq \rho_{n+1} + k_1\|T^n x_{n+1} - x_{n+1}\|
\]
\[
\leq \rho_{n+1} + k_1\|T^n x_{n+1} - T^n x_n\| + k_1\|T^n x_n - x_n\| + k_1\|x_n - x_{n+1}\|
\]
\[
\leq \rho_{n+1} + k_1k_n\|x_{n+1} - x_n\| + k_1\|T^n x_n - x_n\| + k_1\|x_n - x_{n+1}\|
\]
\[
= \rho_{n+1} + k_1(k_n + 1)\|x_n - x_{n+1}\| + k_1\rho_n
\]
\[
\leq \rho_{n+1} + k_1(k_n + 1)\alpha_n\rho_n + k_1k_n(k_n + 1)\alpha_n\beta_n\rho_n + k_1\rho_n.
\]

From Step 1, we have \(\lim_{n \to \infty} \rho_n = 0\), \(k_n \to 1(n \to \infty)\) and \(0 \leq \alpha_n, \beta_n \leq 1\), so
\[
\lim_{n \to \infty} \|x_n - Tx_n\| = 0.
\]

Theorem 2.1 Let \(E\) be a uniformly convex Banach space and \(C\) its nonempty closed convex subset of \(E\), and \(T : C \to C\) be a completely continuously asymptotically nonexpansive mapping with a real sequence \(\{k_n\}\) in \([1, +\infty)\) such that \(\sum_{n=1}^{\infty} (k_n - 1) < +\infty\). Let \(x_1 \in C\), \(\{x_n\}\) be the modified Ishikawa iterative sequence defined by (1.1). If \(F(T) \neq \emptyset\), then \(\{x_n\}\) converges strongly to a fixed point of \(T\).

Proof Since \(F(T) \neq \emptyset\), by Lemma 2.2, we know
\[
\lim_{n \to \infty} \|x_n - Tx_n\| = 0. \tag{2.5}
\]
Since \(T\) is completely continuous, by Lemma 2.1, we have \(\{x_n\}\) is bounded and \(C\) is a closed subset, so there must exist \(\{Tx_{n_k}\}_{k=1}^{+\infty} \subset \{Tx_n\}_{n=1}^{+\infty}\). Set
\[
\lim_{k \to +\infty} Tx_{n_k} = q. \tag{2.6}
\]
It follows from (2.5) and (2.6), we get
\[
\lim_{k \to +\infty} x_{n_k} = q. \tag{2.7}
\]
Since \(T\) is completely continuous, \(T\) is obviously continuous. It follows from (2.6) and (2.7) that so \(\|q - Tq\| = 0\). Thus \(q\) is a fixed point of \(T\).

From (1.1), we have
\[
\|x_{n+1} - q\| = \|(1 - \alpha_n)x_n + \alpha_n T^n y_n - q\| = \|(1 - \alpha_n)(x_n - q) + \alpha_n (T^n y_n - q)\|
\]
\[
\leq (1 - \alpha_n)\|x_n - q\| + \alpha_n k_n\|y_n - q\|. \tag{2.8}
\]
Next, consider
\[
\|y_n - q\| = \|(1 - \beta_n)x_n + \beta_n T^n x_n - q\| = \|(1 - \beta_n)(x_n - q) + \beta_n (T^n x_n - q)\|
\]
\[
\leq (1 - \beta_n)\|x_n - q\| + \beta_n k_n\|x_n - q\| = [1 + (k_n - 1)\beta_n]\|x_n - q\|. \tag{2.9}
\]
Using (2.9) in (2.8), we obtain
\[
\|x_{n+1} - q\| \leq (1 - \alpha_n)\|x_n - q\| + \alpha_n k_n [1 + (k_n - 1)\beta_n]\|x_n - q\|
\]
\[
= \|x_n - q\| + (k_n - 1)(1 + k_n\beta_n)\alpha_n\|x_n - q\|. \quad (2.10)
\]
By Lemma 2.1, for all \(n \geq 0\), \(\|x_n - q\|\) is bounded, \(k_n \to 1\) (\(n \to \infty\)) and \(0 \leq \alpha_n, \beta_n \leq 1\), so there exists \(M > 0\) such that
\[
(1 + k_n\beta_n)\alpha_n\|x_n - q\| \leq M. \quad (2.11)
\]
Submitting it into (2.10), we have
\[
\|x_{n+1} - q\| \leq \|x_n - q\| + M(k_n - 1).
\]
Since \(\sum_{n=1}^{\infty}(k_n - 1) < +\infty\), by Lemma 1.2, we also know \(\lim_{n \to \infty}\|x_n - q\|\) exists. Again by (2.7) and Lemma 1.2, we know \(\{x_n\}\) converges strongly to \(q\).

Corollary 2.1 Let \(E\) be a uniformly convex Banach space and \(C\) its nonempty closed convex subset of \(E\), and \(T : C \to C\) be a completely continuously asymptotically nonexpansive mapping with a real sequence \(\{k_n\}\) in \([1, +\infty)\) such that \(\sum_{n=1}^{\infty}(k_n - 1) < +\infty\). Let \(x_1 \in C\), \(\{x_n\}\) be the modified Mann iterative sequence defined by (1.2). If \(F(T) \neq \emptyset\), then \(\{x_n\}\) converges strongly to a fixed point of \(T\).

Proof Taking \(\beta_n = 0\) in Theorem 2.1, we know Corollary 2.1 is true.

References:

关于一致凸的 Banach 空间上的渐近非扩张映象的迭代序列的收敛性定理的注记

唐玉超， 刘理蔚
（南昌大学数学系，江西 南昌 330047）

摘要：本文研究了在一敛凸 Banach 空间中定义在闭凸集 \(C\) 上渐近非扩张映象 \(T\) 不动点的迭代问题。我们的讨论去掉掉了在刘和薛 [2] 中 \(C\) 是有界的假设。

关键词：渐近非扩张映射；修改的 Ishikawa 迭代序列；不动点。