On \((m, n)\)-Coherent Modules and Preenvelopes

SONG Xian-mei\(^1\), CHEN Jian-long\(^2\)

\(^1\) Department of Mathematics, Anhui Normal University, Anhui 241000, China; \(^2\) Department of Mathematics, Southeast University, Jiangsu 210096, China

(E-mail: sxmsgj@yahoo.com.cn)

Abstract In this paper, let \(m, n\) be two fixed positive integers and \(M\) be a right \(R\)-module, we define \((m, n)\)-\(M\)-flat modules and \((m, n)\)-coherent modules. A right \(R\)-module \(F\) is called \((m, n)\)-\(M\)-flat if every homomorphism from an \((n, m)\)-presented right \(R\)-module into \(F\) factors through a module in \(\text{add}M\). A left \(S\)-module \(M\) is called an \((m, n)\)-coherent module if \(M_{R}\) is finitely presented, and for any \((n, m)\)-presented right \(R\)-module \(K\), \(\text{Hom}(K, M)\) is a finitely generated left \(S\)-module, where \(S = \text{End}(M_{R})\). We mainly characterize \((m, n)\)-coherent modules in terms of preenvelopes (which are monomorphism or epimorphism) of modules. Some properties of \((m, n)\)-coherent rings and coherent rings are obtained as corollaries.

Keywords \((m, n)\)-\(M\)-flat module; \((m, n)\)-coherent module; \((m, n)\)-\(M\)-flat preenvelope.

1. Introduction

Throughout this paper, \(R\) denotes an associative ring with identity and all modules are unitary. For a right \(R\)-module \(A\), \(E(A)\) denotes the injective envelope of \(A\) and \(i : A \rightarrow E(A)\) denotes the inclusion map. Given a right \(R\)-module \(M\), \(M_{I}\) stands for the direct product of copies of \(M\) indexed by \(I\), and \(\text{add}M\) indicates the category consisting of all right \(R\)-modules isomorphic to direct summands of finitely direct sums of copies of \(M\). We simplify \(\text{Hom}_{R}(A, B)\) to \(\text{Hom}(A, B)\) for right \(R\)-modules \(A, B\).

Let \(\mathcal{C}\) be a class of right \(R\)-modules and \(A\) be a right \(R\)-module. A homomorphism \(\varphi : A \rightarrow C\) with \(C \in \mathcal{C}\) is called a \(\mathcal{C}\)-preenvelope of \(A\) if for any homomorphism \(f : A \rightarrow C'\) with \(C' \in \mathcal{C}\), there is a homomorphism \(g : C \rightarrow C''\) such that \(g\varphi = f^{[1]}\). Moreover, if the only such \(g\) is automorphism of \(C\) when \(C' = C\) and \(f = \varphi\), the \(\mathcal{C}\)-preenvelope \(\varphi\) is called a \(\mathcal{C}\)-envelope of \(A\). Following [2], a \(\mathcal{C}\)-envelope of \(A\) \(\varphi : A \rightarrow C\) has the unique mapping property if for any homomorphism \(f : A \rightarrow C'\) with \(C' \in \mathcal{C}\), there is a unique homomorphism \(g : C \rightarrow C'\) such that \(g\varphi = f\).

Received date: 2006-01-03; Accepted date: 2006-08-26

Foundation item: the National Natural Science Foundation of China (No. 10571026); the Natural Science Foundation of Anhui Provincial Education Department (No. 2006k050c); Doctoral Foundation of Anhui Normal University.
Let m and n be two fixed positive integers. Recently, (m, n)-flat modules and (m, n)-coherent rings were introduced and studied in [3],[4],[5]. A right R-module K is said to be (m, n)-presented if there exists an exact sequence of right R-modules $0 \rightarrow L \rightarrow R^m \rightarrow K \rightarrow 0$, where L is n-generated[5]. A right R-module A is said to be (m, n)-flat if $A \otimes_R I \rightarrow A \otimes_R R^m$ is a monomorphism for all n-generated submodule I of the left R-module $R^m[5]$. Moreover, a ring R is said to be left (m, n)-coherent if each n-generated submodule of the left R-module R^m is finitely presented[5]. In this paper, we introduce the concepts of (m, n)-M-flat modules and (m, n)-coherent modules. Let M be a finitely presented right R-module with $S = \text{End}(M_R)$ and m, n fixed positive integers, it is showed that SM is (m, n)-coherent if and only if every right R-module has an (m, n)-M-flat preenvelope; SM is (m, n)-coherent and injective right R-modules are (m, n)-M-flat if and only if every right R-module has an (m, n)-M-flat preenvelope which is a monomorphism; SM is (m, n)-coherent and every submodules of (m, n)-M-flat right R-modules are (m, n)-M-flat if and only if every right R-module has an (m, n)-M-flat preenvelope which is an epimorphism. In particular, some results of left (m, n)-coherent rings and left coherent rings are obtained as corollaries.

2. (m, n)-Coherent modules and preenvelopes

Definition 2.1 Let M be a right R-module. A right R-module F is called (m, n)-M-flat if every homomorphism from a (n, m)-presented right R-module into F factors through a module in $\text{add} M$, i.e., for any (n, m)-presented right R-module K and any homomorphism $f : K \rightarrow F$, there exit a module X in $\text{add} M$ and homomorphisms $g : K \rightarrow X$, $h : X \rightarrow F$ such that $f = hg$.

Remark

(1) By [5], a right R-module F is (m, n)-flat if and only if for every homomorphism from (n, m)-presented right R-module into F factors through a free module. Hence (m, n)-R-flat modules are just (m, n)-flat right R-modules.

(2) It is easy to see that F is an (m, n)-M-flat right R-module if and only if for any (n, m)-presented right R-module K, any homomorphism $f : K \rightarrow F$, there exist a positive integer s and homomorphisms $g : K \rightarrow M^s$, $h : M^s \rightarrow F$ such that $f = hg$.

(3) By definition, the class of (m, n)-M-flat right R-modules is closed under direct summands, finitely direct sums.

(4) If X is in $\text{add} M$, then X is (m, n)-M-flat; if X is (n, m)-presented, and X is (m, n)-M-flat, then X is in $\text{add} M$.

(5) If M is a projective right R-module, F is an (m, n)-M-flat right R-module, then F is (m, n)-flat.

Definition 2.2 For a right R-module M, S denotes the ring $\text{End}(M_R)$. SM is called an (m, n)-coherent module if M_R is finitely presented, and for any (n, m)-presented right R-module K, $\text{Hom}(K, M)$ is a finitely generated left S-module.

Let M be a right R-module, $S = \text{End}(M_R)$ and A, B be right R-modules. We use $\sigma_{A,B}$ denote the homomorphism $\text{Hom}(M, A) \otimes_S \text{Hom}(B, M) \rightarrow \text{Hom}(B, A)$ given by $\sigma_{A,B}(f \otimes g) = fg$.
where \(f \in \text{Hom}(M, A) \), \(g \in \text{Hom}(B, M) \). It is easy to see that if \(C \) is a direct summand of \(B \), and \(\sigma_{A,B} \) is an isomorphism, then \(\sigma_{A,C} \) is also an isomorphism. Hence if \(B \in \text{add}M \), then \(\sigma_{A,B} \) is an isomorphism. Moreover, it is clear that if \(A \in \text{add}M \), then \(\sigma_{A,B} \) is also an isomorphism.

Proposition 2.1 Let \(M \) be a right \(R \)-module. The following statements are equivalent:

1. \(F \) is an \((m,n)\)-\(M \)-flat right \(R \)-module;
2. For any \((n,m)\)-presented right \(R \)-module \(K \), \(\sigma_{F,K} \) is an epimorphism.

Proof (1) \(\Rightarrow \) (2). Let \(K \) be an \((n,m)\)-presented right \(R \)-module. For any \(f \in \text{Hom}(K, F) \), by the definition of \((m,n)\)-\(M \)-flatness, there exist a positive integer \(k \) and homomorphisms \(g : K \to M^k \) and \(h : M^k \to F \) such that \(f = hg \). Let \(p_i : M^k \to M \) and \(\lambda_i : M \to M^k \) denote the \(i \)-th canonical projection and canonical injection respectively. Put \(g_i = p_i g \), \(h_i = h \lambda_i \), then \(\sum_{i=1}^{k} (h_i \otimes g_i) \in \text{Hom}(M, F) \otimes_S \text{Hom}(K, M) \) and \(\sigma_{F,K}(\sum_{i=1}^{k} (h_i \otimes g_i)) = \sum_{i=1}^{k} h_i g_i = \sum_{i=1}^{k} h_i \lambda_i p_i g = f \). Hence \(\sigma_{F,K} \) is an epimorphism.

(2) \(\Rightarrow \) (1). Let \(K \) be an \((n,m)\)-presented right \(R \)-module, and \(f \in \text{Hom}(K, F) \). By hypothesis, \(f = \sigma_{F,K}(\sum_{i=1}^{k} (h_i \otimes g_i)) \) for some \(h_i \in \text{Hom}(M, F) \), \(g_i \in \text{Hom}(K, M) \). Put \(X = M^k \). We define \(g : K \to M^k \) by \(g(x) = (g_1(x), \ldots, g_k(x)) \) for every \(x \in K \) and \(h : M^k \to F \) by \(h(m_1, \ldots, m_k) = \sum_{i=1}^{k} h_i (m_i) \) for every \((m_1, \ldots, m_k) \in M^k \). Then \(f = hg \) and so \(F \) is \((m,n)\)-\(M \)-flat.

Proposition 2.2 Let \(M \) be a pure projective right \(R \)-module. Then every pure submodule of \((m,n)\)-\(M \)-flat right \(R \)-module is \((m,n)\)-\(M \)-flat.

Proof Let \(A \) be a pure submodule of \((m,n)\)-\(M \)-flat module \(B \), and \(K \) be an \((n,m)\)-presented right \(R \)-module. Let \(j : A \to B \) denote the inclusion map, and \(\pi : B \to B/A \) denote a canonical epimorphism. For any \(f \in \text{Hom}(K, A) \), then there exist a module \(X \) in \(\text{add}M \) and homomorphisms \(g : K \to X \), \(h : X \to B \) such that \(jf = hg \). Note that there is a pure projective right \(R \)-module \(Y \) such that \(\alpha : Y \to B \) is a pure epimorphism by [6]. Since \(M \) is pure projective, so \(X \) is pure projective, and there is a homomorphism \(\beta : X \to Y \) such that \(\alpha \beta = h \). Put a pullback of \(\alpha : Y \to B \) and \(j : A \to B \), we have the following commutative diagram

\[
\begin{array}{ccc}
K & \xrightarrow{g} & X \\
\downarrow{\beta} & & \downarrow{\pi}
\end{array}
\]

\[
\begin{array}{cccc}
0 & \xrightarrow{\lambda} & U & \xrightarrow{\pi} & B/A & \xrightarrow{g} & 0 \\
\downarrow{\delta} & & \downarrow{\alpha} & & \downarrow{\beta} & & \downarrow{\pi}
\end{array}
\]

\[
\begin{array}{cccc}
0 & \xrightarrow{j} & A & \xrightarrow{\pi} & B/A & \xrightarrow{g} & 0 \\
\end{array}
\]

Note that \(\pi \alpha \beta g = \pi hg = \pi jf = 0 \), it follows that \(\beta g(K) \subseteq \text{Ker}(\pi \alpha) = \text{Im} \lambda \). But \(\lambda \) is a monomorphism, hence there is a submodule \(V \) of \(U \) such that for any \(y \in K \), there is unique \(x \in V \) satisfying \(\beta g(y) = \lambda(x) \). It is easy to see that \(\lambda \) is a pure monomorphism since \(j \) is a pure monomorphism and \(\alpha \) is a pure epimorphism. Thus since \(K \) is finitely generated, \(V \) is finitely generated. By [7], there exists a homomorphism \(\gamma : Y \to U \) such that \(\gamma \lambda(x) = x \) for any \(x \in V \).
Let \(k = \delta \gamma \beta : X \rightarrow A \). Then for any \(y \in K \),

\[
kg(y) = \delta \gamma \beta g(y) = \delta \gamma \lambda(x) = \delta = \alpha \lambda(x) = hg(y) = f(y).
\]

Therefore \(A \) is \((m,n)\)-M-flat.

Lemma 2.3\(^8\) Let \(M, A \) be right \(R \)-modules and \(S = \text{End}(M_R) \). Then \(A \) has an add\(M\)-preenvelope if and only if \(\text{Hom}(A,M) \) is a finitely generated left \(S \)-module.

Proposition 2.4 Let \(M \) be a right \(R \)-module and \(S = \text{End}(M_R) \). The following statements are equivalent:

1. \(sM \) is an \((m,n)\)-coherent module;
2. \(M_R \) is finitely presented and every \((n,m)\)-presented right \(R \)-module has an add\(M\)-preenvelope;
3. \(M_R \) is finitely presented and every \((n,m)\)-presented right \(R \)-module has an \((m,n)\)-\(M\)-flat preenvelope.

Proof By Lemma 2.3, (1) \(\Leftrightarrow \) (2) is clear.

(2) \(\Rightarrow \) (3). For any \((n,m)\)-presented right \(R \)-module \(K \), it has an add\(M\)-preenvelope \(f : K \rightarrow X \) with \(X \in \text{add}M \). For any \((m,n)\)-flat right \(R \)-module \(F \) and any homomorphism \(g : K \rightarrow F \), there exist \(X_1 \in \text{add}M \) and homomorphisms \(g_1 : K \rightarrow X_1, g_2 : X_1 \rightarrow F \) such that \(g = g_2 g_1 \).

Note that \(f \) is an add\(M\)-preenvelope, it follows that there is a homomorphism \(h : X \rightarrow X_1 \) such that \(hf = g_1 \). Hence \(g_2 h f = g_2 g_1 = g \), that is, \(f \) is an \((m,n)\)-\(M\)-flat preenvelope.

(3) \(\Rightarrow \) (2). For any \((n,m)\)-presented right \(R \)-module \(K \), it has an \((m,n)\)-\(M\)-flat preenvelope \(f : K \rightarrow F \). Hence there exist a right \(R \)-module \(X \in \text{add}M \) and homomorphisms \(g : K \rightarrow X, h : X \rightarrow F \) such that \(f = h g \). It is easy to see that \(g : K \rightarrow X \) is an add\(M\)-preenvelope of \(K \).

Theorem 2.5 Let \(M \) be a finitely presented right \(R \)-module and \(S = \text{End}(M_R) \). The following statements are equivalent:

1. \(sM \) is an \((m,n)\)-coherent module;
2. Every right \(R \)-module has an \((m,n)\)-\(M\)-flat preenvelope;
3. Every \((n,m)\)-presented right \(R \)-module has an add\(M\)-preenvelope;
4. Every \((n,m)\)-presented right \(R \)-module has an \((m,n)\)-\(M\)-flat preenvelope;
5. \(\prod_{i \in I} M \) is an \((m,n)\)-\(M\)-flat right \(R \)-module for any index set \(I \);
6. The direct products of \((m,n)\)-\(M\)-flat right \(R \)-modules is \((m,n)\)-\(M\)-flat;
7. \(\text{Hom}_S(P,M) \) is an \((m,n)\)-\(M\)-flat right \(R \)-module for any projective left \(S \)-module \(P \).

Proof (2) \(\Rightarrow \) (1), (6) \(\Rightarrow \) (5) are trivial and by Proposition 2.4, (1) \(\Leftrightarrow \) (3) \(\Leftrightarrow \) (4).

(1) \(\Rightarrow \) (6). Let \(\{F_i\}_{i \in I} \) be a family of \((m,n)\)-\(M\)-flat right \(R \)-modules and \(K \) be an \((n,m)\)-presented right \(R \)-module. We denote by \(p_i : \prod_{i \in I} F_i \rightarrow F_i \) the ith canonical projection. For any \(f \in \text{Hom}(K, \prod_{i \in I} F_i) \), \(p_i f \) factors through \(X_i \) with \(X_i \in \text{add}M \), that is, there are homomorphisms \(g_i : K \rightarrow X_i \) and \(h_i : X_i \rightarrow F_i \) such that \(p_i f = h_i g_i \). Note that \(sM \) is \((m,n)\)-coherent, it follows that \(K \) has an add\(M\)-preenvelope \(g : K \rightarrow X \). Hence there is a homomorphism
k_i : X → X_i such that k_ig = g_i. By the universal property of direct products, there is a homomorphism h : X → \prod_{i \in I} F_i such that p_ih = h_i k_i, then p_ihg = h_ik_ig = h_ig_i = p_i f. Therefore hg = f.

(6) ⇒ (2). Let A be a right R-module with CardA ≤ \aleph. For any \((m,n)\)-M-flat module F and any homomorphism f : A → F, Cardf(A) ≤ \aleph. Let \(\aleph_{\alpha} = \max\{\text{Card}R, \aleph\} \). Then by [9], there is a pure submodule S of F such that f(A) ⊆ S and CardS ≤ \(\aleph_{\alpha}\). By Proposition 2.2, S is \((m,n)\)-M-flat. Let \((\varphi_i)_{i \in I}\) give all such homomorphisms \(\varphi_i : A → S_i\) with CardS_i ≤ \(\aleph_{\alpha}\). So any homomorphism A → F has a factorization A → S_j → F for some j ∈ I. Hence A → \(\prod_{i \in I} S_i\) is an \((m,n)\)-M-flat preenvelope since \(\prod_{i \in I} S_i\) is \((m,n)\)-M-flat by (6).

(5) ⇒ (1). We need to prove for any \((n,m)\)-presented right R-module A, Hom(A,M) is a finitely generated left S-module. Let \(p_i : M^I → M\) denote the ith canonical projection. By Lemma 3.2.21 in [9], this is equivalent to prove that for any index set I, \(\tau : \text{Hom}(M,M^I) \otimes S \text{Hom}(A,M) → \text{Hom}(A,M)^I\) given by \(\tau(g \otimes f) = (p_igf)\) is an epimorphism, where f ∈ Hom(A,M), \(g \in \text{Hom}(M,M^I)\). Note that \(\sigma_{M^I,A} : \text{Hom}(M,M^I) \otimes \text{Hom}(A,M) → \text{Hom}(A,M^I)\) is an epimorphism since \(M^I\) is \((m,n)\)-M-flat. \(\theta : \text{Hom}(M,M^I) → \text{Hom}(A,M^I)\) given by \(\theta(f) = (pf)_{i \in I}\) is an isomorphism and \(\tau = \theta \sigma_{M^I,A}\), it follows that \(\tau\) is an epimorphism. Therefore \(sM\) is \((m,n)\)-coherent.

(5) ⇒ (7). Since P is a projective left S-module, Hom(P,M) is isomorphic to a direct summand of \(M^I\) for some index set I. By hypothesis, \(M^I\) is \((m,n)\)-M-flat, therefore Hom(P,M) is \((m,n)\)-M-flat.

(7) ⇒ (5). Put \(sP = S^{(I)}\) for any index set I.

In Ref. [5], it was proved that R is a left \((m,n)\)-coherent ring if and only if \(R^I\) is an \((m,n)\)-flat right R-module for any index set I. Hence by Theorem 2.5, when \(M_R = R_R\), it is easy to see that \(R\) is \((m,n)\)-coherent if and only if \(R\) is left \((m,n)\)-coherent ring. So the equivalence (1)–(3) and (6)–(9) of Theorem 3.1 in Ref. [3] is just Corollary 2.6.

Corollary 2.6 The following statements are equivalent:

1. R is a left \((m,n)\)-coherent ring;
2. Every right R-module has an \((m,n)\)-flat preenvelope;
3. Every \((n,m)\)-presented right R-module has a finitely generated projective preenvelope;
4. Every \((n,m)\)-presented right R-module has an \((m,n)\)-flat preenvelope;
5. \(\prod_{i \in I} R\) is \((m,n)\)-flat right R-module for any index set I;
6. The direct products of \((m,n)\)-flat right R-modules is \((m,n)\)-flat;
7. Hom(P,R) is an \((m,n)\)-flat right R-module for any projective left R-module.

Let M be a right R-module \(S = \text{End}(M_R)\). We denote Hom(A,M) by \(A^\ast\), where \(A^\ast\) is a left S-module. Put \(A^{**} = \text{Hom}_S(A^\ast, M)\). Define \(\delta_A : A → A^{**}\) by \(\delta_A(a)(f) = f(a)\) for any a ∈ A and f ∈ Hom(A,M). It is clear that if A ∈ addM, then \(\delta_A\) is an isomorphism.

Proposition 2.7 Let \(sM\) be \((m,n)\)-coherent and K be an \((n,m)\)-presented right R-module. Then K has an addM-envelope if and only if \(K^\ast\) has a projective cover.
Proof Let $f : K \to X$ be an addM-envelope of K. Then $f^* : X^* \to K^*$ is an epimorphism and X^* is a finitely generated projective left S-module. For any $h \in \text{Hom}(X^*, X^*)$ such that $f^*h = f^*$, since $f^{**}\delta_K = \delta_Xf$, it follows that $\delta_X^{-1}h^*\delta_Xf = \delta_X^{-1}f^{**}\delta_K = \delta_X^{-1}(f^*h)^*\delta_K = \delta_X^{-1}f^{**}\delta_K = f$. Note that f is an addM-envelope of K, hence $\delta_X^{-1}h^*\delta_X$ is an isomorphism, and so $h = \delta_X^{-1}h^{**}\delta_X$. It is also an isomorphism. This proves that f^* is a projective cover of K^*. Conversely, let $h : P \to K^*$ be a projective cover of K^*. Note that $S M$ is (m, n)-coherent, K is a finitely generated left S-module and so P is finitely generated. It is clear that $P^* \in \text{addM}$. Let $f = h^*\delta_K : K \to P^*$. For any $\alpha : K \to X$ with $X \in \text{addM}$, X^* is a projective left S-module, hence there is a homomorphism $\beta : X^* \to P$ such that $h\beta = \alpha^*$. Put $\gamma = \delta_X^{-1}\beta^* : P^* \to X$, then we have $\gamma f = \delta_X^{-1}\beta^*f = \delta_X^{-1}\beta^*h^*\delta_K = \delta_X^{-1}(h\beta)^*\delta_K = \delta_X^{-1}\alpha^*\delta_K = \alpha$. Therefore f is an addM-preenvelope of K. If $\varphi : P^* \to P^*$ satisfies $\varphi f = f$. Note that $h^{**}\delta_P = \delta_Kh$ and $\delta_K^*\delta_K = 1_{K^*}$, it follows that $h = \delta_K^*h^{**}\delta_P$. Hence we have $h(\delta_P^{-1}\varphi^*\delta_P) = \delta_K^*h^{**}\varphi^*\delta_P = (\varphi h^*\delta_K)^*\delta_P = (\varphi f)^*\delta_P = f^*\delta_P = \delta_K^*h^{**}\delta_P = h$. Since h is a projective cover of K^*, $\delta_P^{-1}\varphi^*\delta_P$ is an isomorphism. And so $\varphi = \delta_P^{-1}\varphi^*\delta_P$ is also an isomorphism. This proves that f is an addM-envelope.

Corollary 2.8 Let R be a left (m, n)-coherent ring and K be an (n, m)-presented right R-module. Then K has a projective envelope if and only if $\text{Hom}(K, R)$ has a projective cover.

3. Preenvelopes which are monomorphism

In this section, we mainly investigate when every right R-module has an (m, n)-M-flat preenvelope which is a monomorphism.

Theorem 3.1 Let M be a finitely presented right R-module, $S = \text{End}(M_R)$.

1. $S M$ is (m, n)-coherent, every injective right R-module is (m, n)-M-flat.
2. $S M$ is (m, n)-coherent, injective envelope of every (n, m)-presented right R-module is (m, n)-M-flat.
3. $S M$ is (m, n)-coherent, injective envelope of every simple right R-module is (m, n)-M-flat.
4. $S M$ is (m, n)-coherent, every (n, m)-presented right R-module is cogenerated by M_R.
5. $S M$ is (m, n)-coherent, every (n, m)-presented right R-module may be embedded in a module in addM.
6. Every right R-module has an (m, n)-M-flat preenvelope which is a monomorphism.
7. Every (n, m)-presented right R-module has an (n, m)-M-flat preenvelope which is a monomorphism.
8. Every (n, m)-presented right R-module has an addM-preenvelope which is a monomorphism.

Proof (1) \Rightarrow (2), (1) \Rightarrow (3), (1) \Rightarrow (6), (6) \Rightarrow (7), (8) \Rightarrow (5) are trivial.

(2) \Rightarrow (1). Let E be an injective right R-module and K be an (n, m)-presented right R-module. For any homomorphism $f : K \to E$, by hypothesis of (2), $E(K)$ is an (m, n)-M-flat. Hence there are a right R-module X in addM and homomorphisms $g : K \to X$, $h : X \to E(K)$.
such that \(i = hg \). Note that \(E \) is injective, there exists a homomorphism \(k : E(K) \to E \) such that \(f = ki = khg \). Therefore \(E \) is \((m,n)\)-\(M\)-flat.

(3) \(\Rightarrow \) (4). Let \(K \) be an \((n,m)\)-presented right \(R\)-module. By [10], we need to prove that for any nonzero \(x \in K \), there is a homomorphism \(\varphi : K \to M \) such that \(\varphi(x) \neq 0 \). In fact, there exists a maximal submodule \(L \) of \(xR \), then \(E(xR/L) \) is \((m,n)\)-\(M\)-flat. We let \(\lambda : xR \to K \) denote an inclusion map and \(\pi : xR \to xR/L \) be the canonical epimorphism. By the injectivity of \(E(xR/L) \), there exists a homomorphism \(f : K \to E(xR/L) \) such that \(f\lambda = i\pi \). Note that \(E(xR/L) \) is \((m,n)\) \(-\)flat, it follows that there are a positive integer \(n \) and homomorphisms \(g : K \to M^n, h : M^n \to E(xR/L) \) such that \(hg = f \). Since \(x \neq 0 \), we have \(i\pi(x) \neq 0 \), thus \(g(x) \neq 0 \). Suppose \(g(x) = (m_1, \ldots, m_i, \ldots, m_n) \). Then there is a nonzero element \(m_i \in M \) for some \(1 \leq i \leq n \). Hence \(p_i g(x) \neq 0 \). Therefore (4) holds.

(4) \(\Rightarrow \) (5). Let \(K \) be an \((n,m)\)-presented right \(R\)-module. By hypothesis, there is a monomorphism \(\lambda : K \to M^I \) for some index set \(I \). Note that \(sM \) is \((n,m)\)-coherent, hence \(M^I \) is \((m,n)\)-\(M\)-flat. It follows that there are a right \(R\)-module \(X \) in \(\text{add} M \) and homomorphisms \(g : K \to X, h : X \to M^I \) such that \(\lambda = hg \). Since \(\lambda \) is monomorphism, \(g \) is a monomorphism, i.e., (5) holds.

(5) \(\Rightarrow \) (1). Let \(E \) be an injective right \(R\)-module, \(K \) an \((n,m)\)-presented right \(R\)-module and \(f : K \to E \) a homomorphism. By hypothesis, there is a monomorphism \(\lambda : K \to X \) with \(X \in \text{add} M \). Note that \(E \) is injective, there is a homomorphism \(g : X \to E \) such that \(f = g\lambda \). Hence \(E \) is \((m,n)\)-\(M\)-flat.

(7) \(\Rightarrow \) (8). For any \((n,m)\)-presented right \(R\)-module \(K \), by hypothesis, there is an \((m,n)\)-\(M\)-flat preenvelope \(f : K \to F \) which is a monomorphism. Then there exist a right \(R\)-module \(X \) in \(\text{add} M \) and homomorphisms \(g : K \to X, h : X \to F \) such that \(f = hg \). It is easy to see that \(g \) is an \(\text{add} M \)-preenvelope which is a monomorphism. Therefore (8) holds.

Corollary 3.2 The following statements are equivalent:

1. \(R \) is a left \((m,n)\)-coherent ring, every injective right \(R\)-module is \((m,n)\)-flat;
2. \(R \) is a left \((m,n)\)-coherent ring, injective envelope of every \((n,m)\)-presented right \(R\)-module is \((m,n)\)-flat;
3. \(R \) is a left \((m,n)\)-coherent ring, injective envelope of every simple right \(R\)-module is \((m,n)\)-flat;
4. \(R \) is a left \((m,n)\)-coherent ring, every \((n,m)\)-presented right \(R\)-module is torsionless;
5. \(R \) is a left \((m,n)\)-coherent ring, every \((n,m)\)-presented right \(R\)-module may be embedded in a finitely generated projective right \(R\)-module;
6. Every right \(R\)-module has an \((m,n)\)-flat preenvelope which is monomorphism;
7. Every \((n,m)\)-presented right \(R\)-module has an \((m,n)\)-flat preenvelope which is monomorphism;
8. Every \((n,m)\)-presented right \(R\)-module has a finitely generated projective preenvelope which is monomorphism.

Proposition 3.3 Let \(M \) be an injective right \(R\)-module. The following statements are equivalent:
(1) Every \((n, m)\)-presented right \(R\)-module has an \((m, n)\)-\(M\)-flat envelope which is a monomorphism;

(2) Injective envelope of every \((n, m)\)-presented right \(R\)-module is in \(\text{add}\, M\);

(3) Every injective right \(R\)-module is \((m, n)\)-\(M\)-flat;

(4) For any \((n, m)\)-presented right \(R\)-module \(K\), \((m, n)\)-\(M\)-flat envelope of \(K\) exists, and coincides with its injective envelope.

Proof (1) \(\Rightarrow\) (2). For any \((n, m)\)-presented right \(R\)-module \(K\), by hypothesis, \(K\) has an \((m, n)\)-\(M\)-flat envelope \(f : K \to F\) which is a monomorphism. Hence there are a right \(R\)-module \(X\) in \(\text{add}\, M\) and homomorphisms \(g : K \to X\), \(h : X \to F\) such that \(f = hg\). Note that \(g\) is a monomorphism since \(f\) is a monomorphism and \(X\) is injective since \(M\) is injective, it follows that there are \(\alpha : X \to E(K)\) and \(\beta : E(K) \to X\) such that \(\alpha g = i, \beta i = g\). Then \(\alpha \beta = 1\) since \(E(K)\) is an injective envelope, i.e., \(E(K)\) is isomorphic to a direct summand of \(X\). Therefore \(E(K)\) is in \(\text{add}\, M\).

(2) \(\Rightarrow\) (3). Let \(E\) be an injective right \(R\)-module and \(K\) be an \((n, m)\)-presented right \(R\)-module. By hypothesis, \(E(K)\) is in \(\text{add}\, M\). For any homomorphism \(f : K \to E\), there is a homomorphism \(g : E(K) \to E\) such that \(f = gi\). This shows that \(f\) factors through a right \(R\)-module in \(\text{add}\, M\) and hence \(E\) is \((m, n)\)-\(M\)-flat.

(3) \(\Rightarrow\) (4). Let \(K\) be an \((n, m)\)-presented right \(R\)-module. By hypothesis, \(E(K)\) is \((m, n)\)-\(M\)-flat. For any \((m, n)\)-\(M\)-flat right \(R\)-module \(F\), and any homomorphism \(f : K \to F\), there are a right \(R\)-module \(X\) in \(\text{add}\, M\) and homomorphisms \(g : K \to X\) and \(h : X \to F\) such that \(f = hg\). Note that \(X\) is injective since \(M\) is injective, it follows that there is a homomorphism \(k : E(K) \to X\) with \(ki = g\). Hence \(hki = hg = f\). Therefore \(i\) is an \((m, n)\)-\(M\)-flat preenvelope. But \(E(k)\) is an injective envelope of \(K\), hence \(i\) is an \((m, n)\)-\(M\)-flat envelope.

(4) \(\Rightarrow\) (1) is trivial.

4. Preenvelopes which are epimorphisms

In this section, we consider when every right \(R\)-module has an \((m, n)\)-\(M\)-flat preenvelope which is an epimorphism.

Theorem 4.1 Let \(M\) be a finitely presented right \(R\)-module and \(S = \text{End}(M_R)\). The following statements are equivalent:

(1) \(S\) is \((m, n)\)-coherent, and a submodule of \((m, n)\)-\(M\)-flat right \(R\)-module is \((m, n)\)-\(M\)-flat;

(2) Every \((n, m)\)-presented right \(R\)-module has an \((m, n)\)-\(M\)-flat preenvelope which is an epimorphism;

(3) Every right \(R\)-module has an \((m, n)\)-\(M\)-flat preenvelope which is an epimorphism;

(4) Every right \(R\)-module has an \((m, n)\)-\(M\)-flat envelope which is an epimorphism;

(5) Every \((n, m)\)-presented right \(R\)-module has an \(\text{add}\, M\)-preenvelope which is an epimorphism.

Proof (1) \(\Rightarrow\) (3). By Theorem 2.5, every right \(R\)-module \(A\) has an \((m, n)\)-\(M\)-flat preenvelope
$f : A \to F$. Let $F_1 = \Im f$. Then F_1 is $(m, n) - M$-flat by (1). Hence $f : M \to F_1$ is an $(m, n) - M$-flat preenvelope which is an epimorphism.

(3) \implies (2) is trivial.

(2) \implies (5). Let K be an (n, m)-presented right R-module. Then K has an $(m, n) - M$-flat preenvelope $f : K \to F$ which is an epimorphism. Since F is $(m, n) - M$-flat, there exist a right R-module X in $\text{add} M$ and homomorphisms $g : K \to X$ and $h : X \to F$ such that $f = hg$. But X is $(m, n) - M$-flat, hence there exists $k : F \to X$ with $kf = g$. Thus $f = kfk$, and so $hk = 1_F$ since f is epimorphism. Therefore $F \in \text{add} M$ and (5) holds.

(5) \implies (1). By Proposition 4.2, sM is (m, n)-coherent. Let N be $(m, n) - M$-flat and N_1 a submodule of N. For any (n, m)-presented right R-module K, and any homomorphism $f : K \to N_1$, let $\lambda : N_1 \to N$ be the inclusion map. Then there exist a right R-module X in $\text{add} M$ and homomorphisms $g : K \to X$ and $h : X \to N$ such that $\lambda f = hg$. Note that K has an M-preenvelope $k : K \to Y$ which is an epimorphism, then there is a homomorphism $\alpha : Y \to X$ with $ak = g$. Thus $\lambda f = h\alpha k$, whence $\text{Ker} k \subseteq \text{Ker} f$. Define $\beta : Y \to N_1$ by $\beta(k(x)) = f(x)$ for any $x \in K$. It is clear that β is well-defined and $f = \beta k$. Therefore N_1 is $(m, n) - M$-flat and (1) holds.

(1) \iff (4). By Remark in Section 2, the class of $(m, n) - M$-flat right R-modules is closed under direct summands. Then from Theorem 2 in Ref. [11], it follows that every right R-module has an $(m, n) - M$-flat envelope if and only if the class of $(m, n) - M$-flat right R-modules is closed under direct products and submodules. Note that M_R is a a finitely presented right R-module, hence the class of $(m, n) - M$-flat right R-modules is closed under direct products if and only if sM is an (m, n)-coherent module by Theorem 2.5. Therefore (1) \iff (4).

Corollary 4.2 The following statements are equivalent:

1. R is a left (m, n)-coherent ring, and a submodule of (m, n)-flat right R-module is (m, n)-flat;
2. Every (n, m)-presented right R-module has an (m, n)-flat preenvelope which is an epimorphism;
3. Every right R-module has an (m, n)-flat preenvelope which is an epimorphism;
4. Every right R-module has an (m, n)-flat envelope which is an epimorphism;
5. Every (n, m)-presented right R-module has a finitely generated projective preenvelope which is an epimorphism.

Proposition 4.3 Let M_R be a finitely presented right R-module with $S = \text{End}(M_R)$. The following statements are equivalent:

1. sM is (m, n)-coherent, for any (n, m)-presented right R-module K, K^* is a projective left S-module and δ_R is an epimorphism;
2. Every (n, m)-presented right R-module has an $\text{add} M$-envelope which is an epimorphism;
3. Every (n, m)-presented right R-module has an $\text{add} M$-envelope with the unique mapping property and δ_R is an epimorphism.
Proof (1) ⇒ (2). By (1), K^* is a finitely generated projective left S-module, hence $K^{**} \in \text{add}M$. Next we prove that $\delta_K : K \rightarrow K^{**}$ is an addM-envelope of K. For any $X \in \text{add}M$, and any homomorphism $f : K \rightarrow X$, then δ_X is an isomorphism and $\delta_X f = f^{**} \delta_K$. Hence $f = \delta_X^{-1} f^{**} \delta_K$. This proves that δ_K is an addM-preenvelope. If $\alpha \in \text{Hom}(K^{**}, K^{**})$ with $\alpha \delta_K = \delta_K$, then $\delta_K^* \alpha^* = \delta_K^*$. Note that K^* is finitely generated projective, δ_K^* is an isomorphism, and so δ_K^* is an isomorphism since $\delta_K^* \delta_K = 1_{K^*}$. It follows that $\delta_K^* \alpha^* = 1_{K^*}$, whence $\alpha = \delta_K^{-1} \alpha^* \delta_K^{**}$ is an isomorphism. Therefore K has an addM-envelope δ_K which is an epimorphism and (2) holds.

(2) ⇒ (3). For any (n, m)-presented right R-module K, there is an addM-envelope $f : K \rightarrow X$ which is an epimorphism. Hence we have the following exact sequence $0 \rightarrow \text{Hom}(X, L) \rightarrow \text{Hom}(K, L) \rightarrow 0$ for any $L \in \text{add}M$. Therefore f has the unique mapping property. Put $L = M$. Then f^* is an isomorphism, and so f^{**} is also isomorphism. Since $f^{**} \delta_K = \delta_X f$, it is clear that δ_K is an epimorphism.

(3) ⇒ (1). For any (n, m)-presented right R-module K, by (3), there is an addM-preenvelope $f : K \rightarrow X$ and $X^* \cong K^*$. Hence K^* is a finitely generated projective left S-module. Therefore $S M$ is (m, n)-coherent, K^* is a projective left S-module, and (1) holds.

References