The Kinematic Density for Pairs of Intersecting Lines

XIE Peng, XIE Ke-yao, CHENG Meng-liang
(Department of Mathematics, Huazhong University of Science and Technology, Hubei 430074, China)
(E-mail: xiepeng@mail.hust.edu.cn)

Abstract In this paper, we get a kinematic density formula for pairs of intersecting lines which has not yet been gotten in integral geometry by using the moving orthogonal frames method. And we obtain a kinematic formula of the intersection of the pairs of intersecting lines belonging to convex body K by using it.

Keywords pairs of intersecting lines; kinematic density; kinematic formula.

Document code A
MR(2000) Subject Classification 53C65; 60D05
Chinese Library Classification O186.5

1. Introduction

The kinematic density for pairs of intersecting lines in \mathbb{R}^2 is the same as the kinematic density for pairs of lines in \mathbb{R}^2. Let G and L be two lines which intersect at the point P, θ be the angle between G and L, and α be the angle G with the x-axis. We can get the formula\(^{[1,2]}\)
\[
dGdL = \sin \theta dPd\theta d\alpha.
\] (1)

The kinematic density for pairs of intersecting lines in \mathbb{R}^3 is different from the kinematic density for pairs of lines in \mathbb{R}^3. The kinematic density for pairs of lines in \mathbb{R}^3 is\(^{[3]}\)
\[
dGdL = \sin^2 \theta dP_N dQ_N dG_N dL_N dN.
\] (2)

Where N is the common perpendicular of lines G and L, $P=N \cap G$, $Q=N \cap L$, θ denotes the angle between G and L, dP_N and dQ_N are the densities of P and Q on the common perpendicular N, respectively, and dG_N and dL_N are the densities of G and L for the rotations around N, respectively.

The kinematic density for pairs in \mathbb{R}^n is\(^{[4,5]}\)
\[
dGdL = t^{n-3} \sin^2 \theta dP_N dQ_N dG_N dL_N dN,
\] (3)
where t denotes the length of PQ, θ denotes the angle between G and L, dP_N and dQ_N are the densities of P and Q on the common perpendicular N, respectively, and dG_N and dL_N are the densities of G and L for the rotations around N, respectively.

Received date: 2006-04-18; Accepted date: 2007-01-16
Foundation item: the National Natural Science Foundation of China (No. 60074033).
Let K be a convex body in \mathbb{R}^n, and σ the chord intersected by a random line G with K. Consider integrals\[^{[1]}\]

$$I_m^{(n)}(K) = \int_{G \cap K} \sigma^m dG,$$

where m is a nonnegative integer and dG is the density of lines. The integral $I_m^{(n)}(K)$ is called the mth chord-power integral of K.

In particular,

$$I_1^{(n)}(K) = \frac{1}{2} O_{n-1} V,$$

where O_{n-1} is the surface area of $(n - 1)$-dimensional unit sphere and V is the volume of K.

When we study geometric probability\[^{[5]}\], we may meet these problems which need using the related formulas, say, calculating the kinematic measure of the intersection of the lines G and L belonging to convex body K in \mathbb{R}^n. Meanwhile, we notice that these are conditional probability problems.

2. Main results

Lemma The kinematic density for pairs of intersecting lines G and L in \mathbb{R}^n is

$$d G d L = \sin^{n-1} \theta d\theta \omega_1 \omega_2 \cdots \omega_n \omega_1 \omega_2 \cdots \omega_n,$$

where θ is the angle between the lines G and L, and ω_i, ω_{ij} are 1-forms in \mathbb{R}^n,

$$i = 1, 2, \ldots, n; j = 1, 2, \ldots, n.$$

Proof Let g_1 be the unit vector parallel to the line G and l_1 be the unit vector parallel to the line L. Let $\{P, g_1, g_2, g_3, \ldots, g_n\}$ be the moving orthogonal frames, such that the plane π which is spanned by the lines G and L will be perpendicular to $\text{span}(P; g_3, g_4, \ldots, g_n)$. And the lines l_1 and l_2 are also in the plane π. Denote $g_i = l_i$, $i = 3, 4, \ldots, n$. Then

$$l_1 = \cos \theta g_1 + \sin \theta g_2, \quad l_2 = -\sin \theta g_1 + \cos \theta g_2,$$

$$dl_1 = \cos \theta dg_1 + \sin \theta dg_2 + (\cos \theta g_2 - \sin \theta g_1)d\theta,$$

$$dl_2 = -\sin \theta dg_1 + \cos \theta dg_2 - (\cos \theta g_1 + \sin \theta g_2)d\theta.$$

Because the arbitrary line G always intersects the line L, we have

$$d L = dP l_2 \wedge dl_1 l_2 \wedge dl_1 g_3 \wedge \cdots \wedge dl_1 g_n$$

$$= dP(- \sin \theta g_1 + \cos \theta g_2)$$

$$\wedge (\cos \theta dg_1 + \sin \theta dg_2 + (\cos \theta g_2 - \sin \theta g_1)d\theta)(- \sin \theta g_1 + \cos \theta g_2)$$

$$\wedge (\cos \theta dg_1 + \sin \theta dg_2 + (\cos \theta g_2 - \sin \theta g_1)d\theta)g_3$$

$$\wedge \cdots$$

$$\wedge (\cos \theta dg_1 + \sin \theta dg_2 + (\cos \theta g_2 - \sin \theta g_1)d\theta)g_n$$

$$= (- \sin \theta dP g_1 + \cos \theta dP g_2) \wedge (d\theta + dg_1 g_2) \wedge (\cos \theta dg_1 g_3 + \sin \theta dg_2 g_3)$$

$$\wedge \cdots$$
The kinematic density for pairs of intersecting lines

\[\lVert \cos \theta d g_1 g_n + \sin \theta d g_2 g_n \rVert. \]

Since \(^2\) \(dG = dP g_2 \wedge \cdots \wedge dP g_n \wedge d g_1 g_2 \wedge \cdots \wedge d g_1 g_n\), we have

\[dGdL = dP g_2 \wedge \cdots \wedge dP g_n \wedge d g_1 g_2 \wedge \cdots \wedge d g_1 g_n \]
\[\wedge (- \sin \theta d P g_1 + \cos \theta d P g_2) \wedge (d \theta + d g_1 g_2) \wedge (\cos \theta d g_1 g_3 + \sin \theta d g_2 g_3) \]
\[\wedge \cdots \wedge \]
\[\wedge (\cos \theta d g_1 g_n + \sin \theta d g_2 g_n) \]
\[= \sin^{n-1} \theta d \theta d P g_1 \wedge dP g_2 \wedge \cdots \wedge dP g_n \wedge d g_1 g_2 \wedge \cdots \wedge d g_1 g_n \wedge d g_2 g_3 \]
\[\wedge \cdots \wedge d g_2 g_n \]
\[= \sin^{n-1} \theta d \theta \omega_1 \omega_2 \cdots \omega_n \theta_1 \theta_2 \cdots \omega_1 \omega_2 \cdot \cdots \omega_{n-2} \omega_{n-2} \cdots \omega_{2n}. \]

Theorem 1 The kinematic density for pairs of intersecting lines \(G\) and \(L\) in \(\mathbb{R}^n\) is

\[dGdL = \sin^{n-1} \theta d \theta d P u_{n-1} d u_{n-2}, \]

where \(P\) is the intersection of the lines \(G\) and \(L\), \(du_{n-1}\) denotes \((n-1)\)-dimensional volume element of unit sphere \(U_{n-1}\), and \(du_{n-2}\) denotes \((n-2)\)-dimensional volume element of unit sphere \(U_{n-2}\) in \(\mathbb{R}^n\).

Remark 1 The formula (6) of kinematic density for pairs of intersecting lines is different from the formula (3) about kinematic density for pairs of intersecting lines.

Remark 2 For \(n = 3\), we have

\[dGdL = \sin^2 \theta d \theta d P u_1 d u_2, \]

which is different from the formula (2).

Remark 3 But, for \(n = 2\), we have

\[dGdL = \sin \theta d \theta d P u_1, \]

which is the same as the formula (1).

Proof Since \(^2\)

\[dP = \omega_1 \omega_2 \cdots \omega_n, \quad du_{n-1} = \omega_1 \cdots \omega_{n-1}, \quad du_{n-2} = \omega_{n-1} \cdots \omega_{n-2}, \]

by formula (5), we get

\[dGdL = \sin^{n-1} \theta d \theta \omega_1 \omega_2 \cdots \omega_n \omega_1 \cdots \omega_{n-1} \omega_{n-2} \cdots \omega_{2n} \]
\[= \sin^{n-1} \theta d \theta d P u_{n-1} d u_{n-2}. \]

Theorem 2 The kinematic density for pairs of intersecting lines \(G\) and \(L\) in \(\mathbb{R}^n\) is

\[dGdL = \sin^{n-1} \theta d \theta d \Sigma_G d P_G d G, \]

where \(\Sigma\) is the plane spanned by the lines \(G\) and \(L\), \(d \Sigma_G\) is the kinematic density of \(\Sigma\) for the rotations around \(G\), and \(d P_G\) is the kinematic density of \(P\) on \(G\).
Proof Since \(dP_G = \omega_1, \ dG = \omega_2 \cdot \cdots \cdot \omega_n \cdot \omega_1, \ d\Sigma_G = \omega_3 \cdot \cdots \cdot \omega_2, \)

it follows from formula (5) that
\[
\begin{align*}
dGdL &= \sin^{n-1} \theta d\theta \omega_1 \cdot \cdots \cdot \omega_n \omega_2 \\
&= \sin^{n-1} \theta d\theta d\Sigma_G dP_G dG.
\end{align*}
\]

Theorem 3 The kinematic formula of the intersection of the lines \(G \) and \(L \) belonging to convex body \(K \) in \(\mathbb{R}^n \) is
\[
\int_{G \cap L \in K} dGdL = J_n O_{n-1} O_{n-2} V,
\]
where \(J_n = \int_0^{\pi} \sin^{n-1} \theta d\theta \), \(O_{n-1} \) is the surface area of the \((n-1)\)-dimensional unit sphere, \(O_{n-2} \) is the surface area of the \((n-2)\)-dimensional unit sphere, and \(V \) is the volume of \(K \).

Proof By formula (6), we obtain
\[
\begin{align*}
\int_{G \cap L \in K} dGdL &= \int_{P \in K} \sin^{n-1} \theta d\theta dP d\mu_{n-1} d\mu_{n-2} \\
&= O_{n-1} O_{n-2} \int_0^{\pi} \sin^{n-1} \theta d\theta \int_{P \in K} dP \\
&= J_n O_{n-1} O_{n-2} V.
\end{align*}
\]
Also by formula (4) and (7), we obtain
\[
\begin{align*}
\int_{G \cap L \in K} dGdL &= \int_{G \cap L \in K} \sin^{n-1} \theta d\theta dP_G dGd\Sigma_G \\
&= \int_0^{\pi} \sin^{n-1} \theta d\theta \int_{G \cap L \in K} dP_G \int_{G \cap K \neq \emptyset} dG \\
&= \int_0^{\pi} \sin^{n-1} \theta d\theta \int_{G \cap K \neq \emptyset} \text{vol}(G \cap K) dG \\
&= 2J_n O_{n-2} \int_{G \cap K \neq \emptyset} \sigma dG \\
&= 2J_n O_{n-2} I_1^{(n)}(K) = J_n O_{n-1} O_{n-2} V.
\end{align*}
\]

References
\[\begin{align*}
\end{align*}\]